(766h) Tuning HER on Nickel Phosphide Using Chemical Pressure: First Principles and Machine Learning | AIChE

(766h) Tuning HER on Nickel Phosphide Using Chemical Pressure: First Principles and Machine Learning


Wexler, R. B. - Presenter, University of Pennsylvania
Martirez, J. M. P., Princeton University
Rappe, A., University of Pennsylvania
The activity of Ni2P catalysts for the hydrogen evolution reaction (HER) is currently limited by strong H adsorption at the Ni3-hollow site. We investigate the effect of surface nonmetal doping on the HER activity of the Ni3P2 termination of Ni2P(0001), which is stable at modest electrochemical conditions. Using density functional theory (DFT) calculations, we find that both 2p nonmetals and heavier chalcogens provide nearly thermoneutral H adsorption at moderate surface doping concentrations. We also find, however, that only chalcogen substitution for surface P is exergonic. For intermediate surface concentrations of S, the free energy of H adsorption at the Ni3-hollow site is -0.11 eV, which is significantly more thermoneutral than the undoped surface (-0.45 eV). We use the regularized random forest machine learning algorithm to discover the relative importance of structure and charge descriptors, extracted from the DFT calculations, in determining the HER activity of Ni2P(0001) under different doping concentrations. We discover that the Ni-Ni bond length is the most important descriptor of HER activity, which suggests that the nonmetal dopants induce a chemical pressure-like effect on the Ni3-hollow site, changing its reactivity through compression and expansion. [1]

[1] Wexler, R. B.; Martirez, J. M. P.; Rappe, A. M. J. Am. Chem. Soc., 2018, 140 (13), pp 4678-4683.


This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.


Do you already own this?



AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00