(735f) Nanoengineering of an Electroconductive Cardiac Patch
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Nanoscale Science and Engineering Forum
Nanostructured Biomimetic and Biohybrid Materials and Devices
Thursday, November 14, 2019 - 5:20pm to 5:40pm
Here, we first engineered a gelatin-based porous scaffold by electrospinning technique. We then incorporated graphene nanofibers (GNFs) to the acellular porous matrices to fabricate a conductive electrospun composite scaffold. The effects of GNFs on physical properties (such as mechanical properties, degradation, swelling, surface energy, etc.), electrical conductivity and in vitro cytocompatibility of the scaffolds were evaluated. Incorporation of GNFs can bridge the electrically resistant pore walls of the matrices, to support and facilitate the internal electrical interactions between adjacent CMs. Additionally, we will align GNFs according to the electrospinning direction to produce a scaffold that can mimic the shape and orientation of CMs in natural myocardial tissue. In the next step, some epicardial-secreted factors such as cardiogenic and angiogenic factors, and proteins will be incorporated into the conductive patches obtained from the previous stage, with the aim of promoting the myocardial regeneration. It is expected that the integration of conductive GNFs and epicardial factors within 3D scaffolds may improve the therapeutic value of current cardiac patches and will open new avenues for engineering cardiac tissues.