(71b) Speeding up Electrochemical Separations with Energy Impunity Using Ionomer Binder Resin-Wafers
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Electrochemistry for Applications in Sustainability
Monday, November 11, 2019 - 8:30am to 9:00am
This talk will present a new class of resin wafer materials featuring an ion conducing polymer binder. These ionomer binders are similar to the membrane chemistries used in proton exchange and anion exchange membrane fuel cells. The ionomer binder substantially enhances the resin waferâs ionic conductivity by a factor of 3 to 6 for dilute NaCl solutions while also maintaining porosity for liquid flow. As a result, the ionomer-based resin wafers were shown to remove ions from liquid streams faster and with less energy. Inspection of the macrostructure of the resin wafer by electron microscopy and x-ray tomography revealed that the ionomer binder is a better utilized for adhering particles together when compared to polyethylene (i.e., the ionomer binder doesnât cover the particlesâ surfaces completely). Additionally, water-splitting measurements have been carried out in the resin wafers using a homemade 4-point electrochemical cell. Water-splitting occurs in resin wafers when anion-exchange and cation-exchange resin particles come in close proximity to each other leading to an abrupt bipolar junction region. The water-splitting forms hydronium and hydroxide ion carriers that supplement the ionic conductivity and regenerate the ion-exchange resin particles. Compared to bipolar membranes, water splitting in the resin wafer is quite poor when compared to bipolar membranes. The poor water splitting is attributed to the resin-wafer not containing a water dissociation catalyst and having a poor bipolar junction interface. These insights provide new directions for the design of resin wafers that are effective at splitting water.