(6fn) Machine Learning and Data-Enabled Design and Discovery of Soft and Nano Materials | AIChE

(6fn) Machine Learning and Data-Enabled Design and Discovery of Soft and Nano Materials


Patra, T. - Presenter, Argonne National Laboratory
Machine Learning and Data-Enabled Design and Discovery of Soft and Nano Materials

Tarak K. Patra

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA

E-mail: tpatra@anl.gov

Research Interests: High-throughput materials design, Energy storage materials, Polymer nanocomposites, Superlattice, Self-healing materials, Self-assembly, Phase transition, Free energy calculation, and Machine learning

Teaching Interests: Thermodynamics, Transport phenomena, Polymer Physics, Numerical Methods and Molecular modeling

Soft materials are highly correlated many body systems with complex structures and dynamics spanning a wide range of length and time scales. Their relaxation processes involve non-equilibrium phenomena such as vitrification, jamming, and semi-crystallization, which are highly process-dependent. A significant advancement in the understanding of these processes are vital for the successful implementation of soft materials in future electronics, medicine and energy devices. The current understanding of these process in soft materials is limited by many factors. First, atomic level interactions in many soft materials, for a wide range of physicochemical conditions, is not well-established. Second, unlike biomolecules where informatics-based design has been accelerated by the availability of large, open, and homogenous structure-property relation databases such as the protein data bank, similar data in synthetic materials tend to be sparse, heterogenous, and often outright unavailable. Third, due to a general lack of rapid, parallelizable techniques for measuring materials properties, building such databases de novo for a specific problem is often cost-prohibitive. Furthermore, many critical design problems, such as the search for highly flexible barrier materials, target materials properties well outside the range of what have been discovered so far.

The overarching goal of the proposed research program is to address these limitations by combining molecular modeling, machine leaning and evolutionary computing. By combing these tools, I plan to develop more accurate and transferable force fields for a wide range of soft materials, including polymers, small organic molecules, colloids; discover their hitherto unknown structure-property relationship; and accelerate materials design. By integrating data science and first principle calculations, my goal is to address some of the open questions of soft matters – such as the non-universal growth of relaxation time upon cooling a material, the interrelationship between ion conductivity, modulus and glass formation behavior of ionic liquids, and the universal relationship between the structural order parameters and governing forces of a molecular assembly process. Addressing these questions are crucial for many future technologies, such as safer battery with high energy density and longer durability; capsule that prevents drugs from unwanted release and degradation caused by temperature variation; membrane that pulls salts out of sea water rapidly; flexible smart phone that can be wrapped around human’s wrist; and coating that prevents roads and bridges from corrosion. The vision of the proposed program is, therefore, to address above challenging problems and establish new materials design rules by building large amount of accurate homogeneous structure property data; use artificial intelligence (AI) and machine learning to understand their interrelationship; and employ evolutionary algorithms for efficient screening and discovering new structures and properties. This way, the proposed research program aims to push the frontier of materials research towards more predictive designing and phenomenological modeling.

With successful implementation of this program, I hope to study complex physical science problems and attract external funding. I am confident that this research program will lead to the development of useful design rules for flexible electronics; polyelectrolytes for energy storage application; and nanostructure materials for gas storage, water purification and many other applications. In this program, students will be trained in statistical mechanics, wide range of machine learning approaches and artificial intelligence, and their applications in chemical engineering and materials science.

Selected Publications

(Published: 15, Under review: 3, Under preparation: 4, *Correspond Author)

  1. Patra T K, Chan H, Podsiadlo P, Shevchenko E V, Sankaranarayanan S KRS, Narayanan B, Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticles supercrystals, Nanoscale 11, 10655 (2019)
  2. Hung J, Patra T K, Meenakshisundaram V, Mangalara J H and Simmons D S, Universal localization transition underlying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids, Soft Matter 15, 1223 (2019)
  3. Patra T K, Zhang F, Schulman D; Chan H, Cherukara M, Terrones M; Das S, Narayanan B, Sankaranarayanan S KRS, Defect dynamics in 2D materials probed by combining machine learning, molecular simulation and high- resolution microscopy, ACS Nano 12, 8006 (2018)
  4. Cheng Y, Yang J, Hung H, Patra T K*, and Simmons D S, Design rules for highly conductive polymeric ionic liquids from molecular dynamics simulations, Macromolecules 51, 6630 (2018)
  5. Patra T K, Meenakshisundaram V, Hung J, and Simmons D S, Neural network biased genetic algorithm for materials design: Evolutionary algorithms that learn, ACS Combinatorial Science 19, 96 (2017)
  6. Patra T K and Singh J K, Polymer directed aggregation and dispersion of anisotropic nanoparticles, Soft Matter 10, 1823 (2014)
  7. Patra T K and Singh J K, Coarse-grained molecular dynamics simulations of nanoparticle-polymer melts: Dispersion vs. Agglomeration, Journal of Chemical Physics 138, 144901 (2013)
  8. Patra T K, Hens A, Singh JK, Vapor-liquid phase coexistence and transport properties of two dimensional oligomers, Journal of Chemical Physics 137, 084701 (2012)