(644b) Operando Studies to Enumerate the Electrochemical Phase Transformations of MnO2 | AIChE

(644b) Operando Studies to Enumerate the Electrochemical Phase Transformations of MnO2


Gallaway, J. - Presenter, Northeastern University
Banerjee, S., City College of New York
Yadav, G. G., City College of New York
Turney, D., The City College of New York
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);}

Joshua Gallaway Joshua Gallaway 2 1 2019-04-08T03:12:00Z 2019-04-08T03:12:00Z 1 997 5497 Energy Institute 88 41 6453 14.0

false 18 pt 18 pt 0 0 false false false EN-US JA X-NONE <ENInstantFormat><Enabled>1</Enabled><ScanUnformatted>1</ScanUnformatted><ScanChanges>1</ScanChanges><Suspended>0</Suspended></ENInstantFormat> <ENLayout><Style>J Power Sources</Style><LeftDelim>{</LeftDelim><RightDelim>}</RightDelim><FontName>Arial</FontName><FontSize>10</FontSize><ReflistTitle></ReflistTitle><StartingRefnum>1</StartingRefnum><FirstLineIndent>0</FirstLineIndent><HangingIndent>720</HangingIndent><LineSpacing>0</LineSpacing><SpaceAfter>0</SpaceAfter><HyperlinksEnabled>0</HyperlinksEnabled><HyperlinksVisible>0</HyperlinksVisible><EnableBibliographyCategories>0</EnableBibliographyCategories></ENLayout> <Libraries><item db-id="zdwesvxxys0wt8ez9tlvxax0pfvtxxarx9vd">Zinc Battery<record-ids><item>318</item><item>442</item><item>448</item><item>509</item><item>511</item><item>519</item><item>766</item><item>1120</item><item>1136</item><item>1204</item><item>1220</item><item>1242</item><item>1273</item><item>1282</item><item>1301</item><item>1302</item><item>1305</item><item>1326</item><item>1356</item><item>1436</item><item>1439</item><item>1440</item><item>1480</item><item>1492</item><item>1507</item><item>1513</item></record-ids></item></Libraries>

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-fareast-language:JA;} table.MsoTableGrid {mso-style-name:"Table Grid"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-priority:59; mso-style-unhide:no; border:solid black 1.0pt; mso-border-themecolor:text1; mso-border-alt:solid black .5pt; mso-border-themecolor:text1; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-border-insideh:.5pt solid black; mso-border-insideh-themecolor:text1; mso-border-insidev:.5pt solid black; mso-border-insidev-themecolor:text1; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-fareast-language:JA;}

This talk will concern the electrochemical phase
transformations that occur during cycling of electrolytic manganese dioxide
(EMD) when used as a cathode material in alkaline batteries. While previous
studies have focused on the initial and final states of the material, we focus
on the pathway as observed during cycling. The goal is identification of the materials
that prevent battery recharging once they have formed, and the conditions that
lead to these terminal materials. MnO2 is inexpensive and has a high
theoretical capacity (617 mAh/g-MnO2), making it an attractive
option for large-scale battery storage. Figure 1 shows the discharge pathway of
EMD. Two strategies have been employed to use EMD for rechargeable batteries.
The first is limitation of the discharge capacity to prevent phase changes,
i.e. shallow cycling.[1-5] The second is
modification of the material to allow deep discharge along a favorable pathway,
i.e. modified deep cycling.[6-17]

EMD is a commercially-relevant polymorph of MnO2
used extensively in primary alkaline batteries. Its structure is typically
described as an intergrowth of 1x1 tunnel MnO2 (pyrolusite or β-MnO2) and 2x1
tunnel MnO2 (ramsdellite), and is variously classified as either γ-MnO2 or ε-MnO2 in the
literature.[18-20] Its diffraction
pattern can be matched to standards of the MnO2-based minerals
akhtenskite and nsutite. However there can be variation in the observed
diffraction peaks depending on the material source. As a cathode in alkaline
electrolyte, its discharge proceeds via the insertion of protons into the
crystal lattice following the reaction:

MnO2 + xH2O
+ xe-⇌ MnO2-x(OH)x
+ xOH-

Initially the discharged material maintains the same crystal
structure, and the unit cell expands anisotropically as x increases.[21] We report a series of experiments
performed on thick electrodes that identify the crystalline materials formed in
the later stages of discharge, beginning with a solid state phase
transformation to α-MnOOH
that occurred at x = 0.79 regardless of rate or location in the electrode.[22] From this, a series of other materials was
formed. First Mn3O4 and ZnMn2O4
spinels rapidly followed α-MnOOH,
which was the precursor material for spinel formation. At x = 1.92, layered
Mn(OH)2 appeared as the discharge end member. yes">[23] We show evidence that the spinels displayed some
rechargeability, which was limited by their low conductivity, effectively rendering
them self-isolating. These experiments were performed using high energy, high
flux energy dispersive X-ray diffraction (EDXRD) from a synchrotron source.[24-26]

Standard electrodes were limited to one discharge due to Mn3O4
and ZnMn2O4. However, if Bi3+ ions were
present Mn(OH)2 was preferentially formed in greater amount, and
this was recharged to the layered polymorph Arial">δ-MnO2 or birnessite. The birnessite discharge
occurred at a lower potential than that of EMD. The insertion of cations into
the birnessite interlayer or van der Waals gap caused contraction of the
birnessite unit cell during discharge.[23]
Operando XANES data indicated the presence of Arial">β-MnOOH as a discharge intermediate, although this material
was poorly crystalline and was not observed by X-ray diffraction. The
recognition of non-crystalline intermediate species within the discharge
pathway aids in expanding understanding of the mechanisms underlying alkaline
MnO2 cycling.

MnO2 figure.jpg


[1] N.D. Ingale, J.W. Gallaway, M. Nyce, A. Couzis, S.
Banerjee, J Power Sources, 276 (2015) 7-18.

[2] J. Duay, M. Kelly, T.N. Lambert, J Power Sources,
395 (2018) 430-438.

[3] M. Kelly, J. Duay, T.N. Lambert, R. Aidun, J
Electrochem Soc, 164 (2017) A3684-A3691.

[4] J.C. Huang, G.G. Yadav, J.W. Gallaway, X. Wei, M.
Nyce, S. Banerjee, Electrochem Commun, 81 (2017) 136-140.

[5] K. Kordesch, J. Gsellmann, M. Peri, K. Tomantschger,
R. Chemelli, Electrochim Acta, 26 (1981) 1495-1504.

[6] M.A. Dzieciuch, N. Gupta, H.S. Wroblowa, J
Electrochem Soc, 135 (1988) 2415-2418.

[7] H.S. Wroblowa, N. Gupta, J Electroanal Chem, 238
(1987) 93-102.

[8] D. Im, A. Manthiram, J Electrochem Soc, 150 (2003)

[9] G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce,
J. Huang, X. Wei, S. Banerjee, Nature communications, 8 (2017) 14424.

[10] G.G. Yadav, X. Wei, J.W. Gallaway, Z. Chaudhry,
A. Shin, J. Huang, R. Yakobov, M. Nyce, N. Vanderklaauw, S. Banerjee, Materials
Today Energy, 6 (2017) 198-210.

[11] G.G. Yadav, X. Wei, J. Huang, J.W. Gallaway, D.E.
Turney, M. Nyce, J. Secor, S. Banerjee, Journal of Materials Chemistry A, 5
(2017) 15845-15854.

[12] H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han,
Z.M. Nie, C.M. Wang, J.H. Yang, X.L. Li, P. Bhattacharya, K.T. Mueller, J. Liu,
Nat Energy, 1 (2016).

[13] S.A. Mehta, A. Bonakdarpour, D.P. Wilkinson,
Journal of Applied Electrochemistry, 47 (2017) 167-181.

[14] M.R. Bailey, J.A. Denman, S.W. Donne, J
Electrochem Soc, 161 (2014) A403-A409.

[15] M.R. Bailey, S.W. Donne, J Electrochem Soc, 159
(2012) A999-A1004.

[16] M. Chamoun, W.R. Brant, C.-W. Tai, G. Karlsson,
D. NorŽus, Energy Storage Materials, 15 (2018) 351-360.

[17] B.J. Hertzberg, A. Huang, A. Hsieh, M. Chamoun,
G. Davies, J.K. Seo, Z. Zhong, M. Croft, C. Erdonmez, Y.S. Meng, D. Steingart,
J Mater Chem, 28 (2016) 4536-4545.

[18] Y. Chabre, J. Pannetier, Prog Solid State Ch, 23
(1995) 1-130.

[19] D.E. Simon, R.W. Morton, J.J. Gislason, Advances
in X-ray Analysis, 47 (2004) 267-280.

[20] C.H. Kim, Z. Akase, L.C. Zhang, A.H. Heuer, A.E.
Newman, P.J. Hughes, J Solid State Chem, 179 (2006) 753-774.

[21] C. Mondoloni, M. Laborde, J. Rioux, E. Andoni, C.
Levyclement, J Electrochem Soc, 139 (1992) 954-959.

[22] J.W. Gallaway, B.J. Hertzberg, Z. Zhong, M.
Croft, D.E. Turney, G.G. Yadav, D.A. Steingart, C.K. Erdonmez, S. Banerjee, J
Power Sources, 321 (2016) 135-142.

[23] J.W. Gallaway, G.G. Yadav, D.E. Turney, M. Nyce,
J. Huang, Y.-c.K. Chen-Wiegart, G. Williams, J. Thieme, J.S. Okasinski, X. Wei,
J Electrochem Soc, 165 (2018) A2935-A2947.

[24] J.W. Gallaway, C.K. Erdonmez, Z. Zhong, M. Croft,
L.A. Sviridov, T.Z. Sholklapper, D.E. Turney, S. Banerjee, D.A. Steingart,
Journal of Materials Chemistry A, 2 (2014) 2757–2764.

[25] J.W. Gallaway, M. Menard, B. Hertzberg, Z. Zhong,
M. Croft, L.A. Sviridov, D.E. Turney, S. Banerjee, D.A. Steingart, C.K.
Erdonmez, J Electrochem Soc, 162 (2015) A162-A168.

[26] N.W. Brady, Q.
Zhang, A. Bruck, D.C. Bock, C.A. Gould, A.C. Marschilok, K. Takeuchi, E.
Takeuchi, A.C. West, J Electrochem Soc, 165 (2018) A371-A379.


This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.


Do you already own this?



AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00