(640f) Towards Modelling the Morphology of Particles Obtained from Spray Dried Droplets | AIChE

(640f) Towards Modelling the Morphology of Particles Obtained from Spray Dried Droplets

Authors 

Abdullahi, H. - Presenter, University of Manchester
Vetter, T., University of Manchester
Burcham, C. L., Eli Lilly and Company
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);}

Hassan Abdullahi Hassan Abdullahi 3 13 2019-04-08T17:14:00Z 2019-04-12T15:24:00Z 2019-04-12T15:26:00Z 1 773 4408 University of Manchester 36 10 5171 14.0

Clean Clean false false false false EN-GB JA X-NONE


/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}


mso-bidi-font-family:Arial">TOWARDS MODELLING THE MORPHOLOGY OF PARTICLES
OBTAINED FROM SPRAY DRIED DROPLETS

Hassan Abdullahi 1, Christopher
L. Burcham, top:-3.0pt;mso-text-raise:3.0pt">2  Thomas
Vetter1*  mso-bidi-font-family:Calibri;position:relative;top:-3.0pt;mso-text-raise:3.0pt;
font-style:normal">

1 School of Chemical Engineering and Analytical
Science, University of Manchester, Manchester, UK

2 Eli Lilly & Company, Indianapolis, USA

tab-stops:70.9pt"> Arial">

tab-stops:70.9pt"> Arial">Spray drying is used to form particles from droplets (clear liquid or a
suspension of particles) in a hot gas stream. There is recent and renewed
interest in this technology within the pharmaceutical industry as it presents a
way to co-formulate active pharmaceutical (APIs) with excipients [6].
By manipulating drying conditions (gas temperature, relative humidity, ratio of
gas flow rate to liquid/suspension flow rate) spray drying also allows tuning
the external shape, apparent density, etc. of the particulate product. Figure 1
shows an overview of possible morphologies that can be obtained from such a
process [3].

Arial;mso-ansi-language:EN-US;mso-no-proof:yes">




90jcwfIWJQ5dIISSdEHaJSBUDjCyJ4nVZGx53NDeHictG4SKWNrj9//TuFwfx0FMGNg6quR9XkiB
pJ2x1FXyY7fNHqXgCGRgcISVPCHLdX17U+5OHlkkmriSfYz+SSnWPY7AufNIadK6MEJMx9ApD3oP
HapVUTwo7SgixSzOGbIuG2zhMESxOabrs0nCpXg+v5urKgneD1ZDTKJqnqpfuYADXwEnMj/ssotZ
nsglnHvr+e7S8JpWE6xB8QYhvsCYPJQJrHDlGqfz65Zz2ciZa1urMW8Cbxbqr2zjPing9N/wJmHv
OH2nq+WD6i8AAAD//wMAUEsDBBQABgAIAAAAIQAjsmrh1wAAAJQBAAALAAAAX3JlbHMvLnJlbHOk
kMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr28w6DZfS2o36h7xP//vCZFrUiS6Rs
YNf1oDA78jEHA++X49MLKKk2e7tQRgM3FDiMjw/7My62tiOZYxHVKFkMzLWWV63FzZisdFQwt81E
nGxtIwddrLvagHro+2fNvxkwbpjq5A3wye9AXW6lmf+wU3RMQlPtHCVN0xTdPaoObMsc3ZFtwjdy
jWY5YDXgWTQO1LKu/Qj6vn74p97TRz7jutV+h4zrj1dvuhy/AAAA//8DAFBLAwQUAAYACAAAACEA
TkbBvo4CAAApBQAADgAAAGRycy9lMm9Eb2MueG1srFRLb9swDL4P2H8QdE9sp07bGHUKN0GGAUVb
oB16VmQ5FqDXJCV2N+y/j5LjZu12GIZdZIqk+fj4UVfXvRTowKzjWpU4m6YYMUV1zdWuxF+eNpNL
jJwnqiZCK1biF+bw9fLjh6vOFGymWy1qZhEEUa7oTIlb702RJI62TBI31YYpMDbaSuLhandJbUkH
0aVIZml6nnTa1sZqypwD7Xow4mWM3zSM+vumccwjUWKozcfTxnMbzmR5RYqdJabl9FgG+YcqJOEK
kr6GWhNP0N7y30JJTq12uvFTqmWim4ZTFnuAbrL0XTePLTEs9gLgOPMKk/t/Yend4cEiXpd4dpaf
YaSIhCk9sd6jG92jqASMOuMKcH004Ox7sMCsA3ZB70AZWu8bK8MXmkJgB7RfXhEO8Sgo80WWL1Iw
UbDNFufzfB7CJKe/jXX+E9MSBaHEFiYYgSWHW+cH19ElJHNa8HrDhQiXYFgJiw4Ept213LNj8Dde
QgVfpcNfQ8BBwyJdhiykgIpBDJ6h9jjK76v5xay6mC8m59U8m+RZejmpqnQ2WW+qtErzzWqR3/yA
aiXJ8qIDUhmgZMASANsIsjsOMJj/boKS0Dd8z7IkMm0oGwJH6MZSk9M0guT7bQ+OQdzq+gUmZ/XA
f2fohgNWt8T5B2KB8DARWGJ/D0cjdFdifZQwarX99id98IcuwIpR6LXE7uueWIaR+KyAoWHbRsGO
wnYU1F6uNEwpg+fB0CjCD9aLUWysls+w21XIAiaiKOQqsR/FlR/WGN4GyqoqOsFOGeJv1aOhIfTI
iaf+mVhzZJQHuO70uFqkeEeswXdgSLX3uuGRdScUAfJwgX2M4B/fjrDwv96j1+mFW/4EAAD//wMA
UEsDBBQABgAIAAAAIQAI9AdB3gAAAAgBAAAPAAAAZHJzL2Rvd25yZXYueG1sTI/BTsMwDIbvSLxD
ZCQuiKWr1g51dSfY4AaHjWnnrMnaisapmnTt3h5zYkf7t35/X76ebCsupveNI4T5LAJhqHS6oQrh
8P3x/ALCB0VatY4MwtV4WBf3d7nKtBtpZy77UAkuIZ8phDqELpPSl7Wxys9cZ4izs+utCjz2ldS9
GrnctjKOolRa1RB/qFVnNrUpf/aDRUi3/TDuaPO0Pbx/qq+uio9v1yPi48P0ugIRzBT+j+EPn9Gh
YKaTG0h70SKwSEBYpAkLcLxcLnhzQkjmcQKyyOWtQPELAAD//wMAUEsBAi0AFAAGAAgAAAAhAOSZ
w8D7AAAA4QEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYA
CAAAACEAI7Jq4dcAAACUAQAACwAAAAAAAAAAAAAAAAAsAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYA
CAAAACEATkbBvo4CAAApBQAADgAAAAAAAAAAAAAAAAAsAgAAZHJzL2Uyb0RvYy54bWxQSwECLQAU
AAYACAAAACEACPQHQd4AAAAIAQAADwAAAAAAAAAAAAAAAADmBAAAZHJzL2Rvd25yZXYueG1sUEsF
BgAAAAAEAAQA8wAAAPEFAAAAAA==
" stroked="f">

Figure  SEQ Figure \* ARABIC 1: The morphological evolution of a droplet during drying. The dimensionless Peclet number (the ratio of convective transport to diffusive transport) is used to describe the various drying routes.


 The morphological evolution of a droplet during drying. The dimensionless Peclet number (the ratio of convective transport to diffusive transport) is used to describe the various drying routes. font-family:Calibri;mso-bidi-font-family:Arial">

While
there has been progress in describing the formation of such complex structures
during drying in recent years [1][5][6],
there is scope to develop a robust mechanistic model coupling the
phenomena of evaporation, mass transfer and particle formation. Such a model is
useful in the prediction of particle morphologies and ultimately product
properties. The aim of this work is to introduce such a mechanistic model based
on population balance equations that allows describing several of the above
morphologies. As a first step, we describe a situation where droplets are
saturated with liquid. The droplet is heated to the wet-bulb temperature where
shrinkage occurs at a near constant rate and particles are formed within the
droplet as illustrated in Figure 1 (first drying stage)[4]. In the
second stage, shrinkage stops as a locked shell is formed around the droplet.
The evaporation rate falls continuously as the thickness of the shell increases
[2][3]. In the end, the balance of various forces determines the
type of particle formed [3]. An accurate description of such a
process requires detailed formulation of internal and external mass and energy conservation
equations.

By
taking a differential control volume for the homogeneous droplet (Figure 2) and
assuming a radially symmetrical droplet, we can describe the nucleation/growth
of particles as well as the advection/diffusion of liquid and solids within the
droplet during drying.

Arial;mso-ansi-language:EN-US;mso-no-proof:yes">


90jcwfIWJQ5dIISSdEHaJSBUDjCyJ4nVZGx53NDeHictG4SKWNrj9//TuFwfx0FMGNg6quR9XkiB
pJ2x1FXyY7fNHqXgCGRgcISVPCHLdX17U+5OHlkkmriSfYz+SSnWPY7AufNIadK6MEJMx9ApD3oP
HapVUTwo7SgixSzOGbIuG2zhMESxOabrs0nCpXg+v5urKgneD1ZDTKJqnqpfuYADXwEnMj/ssotZ
nsglnHvr+e7S8JpWE6xB8QYhvsCYPJQJrHDlGqfz65Zz2ciZa1urMW8Cbxbqr2zjPing9N/wJmHv
OH2nq+WD6i8AAAD//wMAUEsDBBQABgAIAAAAIQAjsmrh1wAAAJQBAAALAAAAX3JlbHMvLnJlbHOk
kMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr28w6DZfS2o36h7xP//vCZFrUiS6Rs
YNf1oDA78jEHA++X49MLKKk2e7tQRgM3FDiMjw/7My62tiOZYxHVKFkMzLWWV63FzZisdFQwt81E
nGxtIwddrLvagHro+2fNvxkwbpjq5A3wye9AXW6lmf+wU3RMQlPtHCVN0xTdPaoObMsc3ZFtwjdy
jWY5YDXgWTQO1LKu/Qj6vn74p97TRz7jutV+h4zrj1dvuhy/AAAA//8DAFBLAwQUAAYACAAAACEA
C1KFsZECAAAwBQAADgAAAGRycy9lMm9Eb2MueG1srFRLb9swDL4P2H8QdE9sp07TGnUKN0GGAUVb
oB16VmQ5FqDXJCV2N+y/j5LjdO12GIZdZIqk+fg+UlfXvRTowKzjWpU4m6YYMUV1zdWuxF+eNpML
jJwnqiZCK1biF+bw9fLjh6vOFGymWy1qZhEEUa7oTIlb702RJI62TBI31YYpMDbaSuLhandJbUkH
0aVIZml6nnTa1sZqypwD7Xow4mWM3zSM+vumccwjUWKozcfTxnMbzmR5RYqdJabl9FgG+YcqJOEK
kp5CrYknaG/5b6Ekp1Y73fgp1TLRTcMpiz1AN1n6rpvHlhgWewFwnDnB5P5fWHp3eLCI1yWeneU5
RopIYOmJ9R7d6B5FJWDUGVeA66MBZ9+DBbgO2AW9A2VovW+sDF9oCoEd0H45IRziUVDm+XyxSMFE
wXaWzy5BhjDJ69/GOv+JaYmCUGILDEZgyeHW+cF1dAnJnBa83nAhwiUYVsKiAwG2u5Z7dgz+xkuo
4Kt0+GsIOGhYHJchCymgYhCDZ6g9Uvl9NV/MqsX8cnJezbNJnqUXk6pKZ5P1pkqrNN+sLvObH1Ct
JFledDBUBkYyYAmAbQTZHQkM5r9jUBL6Zt6zLImTNpQNgSN0Y6nJKxtB8v22j8yemNrq+gUItHpY
A2fohgNkt8T5B2Jh7oEY2GV/D0cjdFdifZQwarX99id98IdmwIpRaLnE7uueWIaR+KxgUMPSjYId
he0oqL1caSArg1fC0CjCD9aLUWysls+w4lXIAiaiKOQqsR/FlR+2GZ4IyqoqOsFqGeJv1aOhIfQ4
Gk/9M7HmOFgeULvT44aR4t18Db7DoFR7rxsehy/gOqAIyIcLrGXk4PiEhL3/9R69Xh+65U8AAAD/
/wMAUEsDBBQABgAIAAAAIQDXnPDA3gAAAAgBAAAPAAAAZHJzL2Rvd25yZXYueG1sTI/BTsMwEETv
SPyDtUhcEHWaSqENcSrawg0OLVXP29gkEfE6sp0m/XuWExx3ZjT7plhPthMX40PrSMF8loAwVDnd
Uq3g+Pn2uAQRIpLGzpFRcDUB1uXtTYG5diPtzeUQa8ElFHJU0MTY51KGqjEWw8z1htj7ct5i5NPX
Unscudx2Mk2STFpsiT802JttY6rvw2AVZDs/jHvaPuyOr+/40dfpaXM9KXV/N708g4hmin9h+MVn
dCiZ6ewG0kF0CnhIVLBYpCsQbD8lKStnVpbZCmRZyP8Dyh8AAAD//wMAUEsBAi0AFAAGAAgAAAAh
AOSZw8D7AAAA4QEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAU
AAYACAAAACEAI7Jq4dcAAACUAQAACwAAAAAAAAAAAAAAAAAsAQAAX3JlbHMvLnJlbHNQSwECLQAU
AAYACAAAACEAC1KFsZECAAAwBQAADgAAAAAAAAAAAAAAAAAsAgAAZHJzL2Uyb0RvYy54bWxQSwEC
LQAUAAYACAAAACEA15zwwN4AAAAIAQAADwAAAAAAAAAAAAAAAADpBAAAZHJzL2Rvd25yZXYueG1s
UEsFBgAAAAAEAAQA8wAAAPQFAAAAAA==
" stroked="f">

Figure 2: A conceptual control volume of a droplet drying during the first drying stage. Energy is transported to the droplet from the drying gas while mass is transported away from the surface.


 A conceptual control volume of a droplet drying during the first drying stage. Energy is transported to the droplet from the drying gas while mass is transported away from the surface. font-family:Calibri;mso-bidi-font-family:Arial">

Arial;mso-ansi-language:EN-US;mso-no-proof:yes">

mso-bidi-font-family:Arial">

mso-bidi-font-family:Arial">A material balance for the liquid phase is introduced (Equation 1), where the
change in liquid concentration c of
component i 
(for i = 1Én-1) within the droplet is described
by the rate of advection and diffusion of solute molecules, the rate of
nucleation of particles and the growth rate of particles within the droplet
respectively. The number density distribution of particles Ni and temperature distribution
are described similarly by Equation 2 and 3 respectively [4][5].



mso-bidi-font-family:Arial">

mso-bidi-font-family:Arial">



mso-bidi-font-family:Arial">

mso-bidi-font-family:Arial">


mso-bidi-font-family:Arial">The equations are complemented by appropriate
boundary conditions. In the second stage, the equations are similar and are
only adapted to describe the presence of a shell region.  Solving the above equations yields data for
the evolution of particle properties such as size, shell lock time and
porosity. Results from simulations are validated using an extensive data set
obtained from the controlled drying of single droplets containing varying
compositions of mannitol and paracetamol
in a solvent using acoustic levitation. In addition, Scanning electron
microscope (SEM) imaging yields external morphology data and X-ray-computed
tomography allows visualisation of the internal structure of individual
particles and hence yields comparable data of shell thickness.  This in fact represents the first time
such a shell thickness analysis is applied to single droplet drying. In the
end, we demonstrate key fundamental understanding of droplet drying and
particle formation through combined mechanistic modelling and detailed
experimental methodologies. The resultant model can be applied to the
simulation of typical spray drying processes when combined with knowledge of
the flow pattern in the processing vessel. 

References

mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:
Cambria;mso-bidi-theme-font:minor-latin">

mso-themecolor:text1;background:white">1) Liang, H., Minoshima, H.,Matsushima,
K., Shinohara, K. Basic model of spray drying granulation. Journal of Chemical
Engineering font-family:Calibri;mso-ansi-language:NO-BOK">of
Japan 2001, 34 (4), 472–478. font-family:Calibri">

2)
Maurice, U., Mezhericher, M., Levy, A. and Borde, I. (2015). Drying of Droplets Containing Insoluble Nanoscale Particles: Second Drying Stage. Drying Technology, 33(15-16), pp.1837-1848.

mso-ansi-language:EN-US">3) 9.0pt;font-family:Calibri">Mezhericher 9.0pt;font-family:Calibri">, M., Levy, A. and Borde,
I. (2011). Modelling the morphological evolution of nanosuspension
droplet in constant-rate drying stage. Chemical Engineering
Science
, 66(5), pp.884-896.

4) Mezhericher, M., Naumann, M., Peglow, M., Levy, A., Tsotsas, E.
and Borde, I. (2012). Continuous species transport
and population balance models for first drying stage of nanosuspension
droplets. Chemical Engineering Journal, 210,
pp.120-135.

5) Seydel, P., Blšmer, J. and Bertling, J. (2006). Modeling
Particle Formation at Spray Drying Using Population Balances. Drying Technology, 24(2), pp.137-146.

mso-themecolor:text1;background:white">6) Vehring, R.
(2007). Pharmaceutical Particle Engineering via Spray Drying. Pharmaceutical Research, 25(5), pp.999-1022.