(625f) Bioadhesive Hydrogels with Antimicrobial and Osteoinductive Properties for Periodontal Applications | AIChE

(625f) Bioadhesive Hydrogels with Antimicrobial and Osteoinductive Properties for Periodontal Applications

Authors 

Shirzaei Sani, E. - Presenter, Northeastern University
Annabi, N., Northeastern University
Cao, Z., Northeastern University
Ishii, M., University of California, Los Angeles,
Zandi, N., Northeastern University
Intini, G., Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
Pirih, F., University of California, Los Angeles,
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);}

Ilia Normal Ehsan Shirzaei 2 0 2019-04-12T18:31:00Z 2019-04-12T18:43:00Z 2019-04-12T18:43:00Z 2 731 4168 34 9 4890 16.00

Clean Clean false false false false EN-US JA AR-SA


/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}


Bioadhesive Hydrogels with Antimicrobial and Osteoinductive
Properties for Periodontal Applications

justify;line-height:normal"> " times new roman major-bidi>Ehsan Shirzaei Sani1, Aline Yaghsezian2, Zheng Cao3, Makiko
Ishii2, Nooshin Zandi3,
Giuseppe Intini4, Flavia Pirih2, Nasim Annabi1,5

justify;line-height:normal">1Chemical and Biomolecular Engineering Department,
University of California - Los Angeles, Los Angeles, CA, USA

justify;line-height:normal">2Division of Constitutive and Regenerative Sciences,
UCLA School of Dentistry, Los Angeles, CA 90095, USA

justify;line-height:normal">3Department of Chemical Engineering, Northeastern
University, Boston, MA, USA

justify;line-height:normal">4Division of Periodontology, Department of Oral
Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston,
MA, USA

justify;line-height:normal">5Center for Minimally Invasive Therapeutics (C-MIT),
California NanoSystems Institute (CNSI), University
of California - Los Angeles, Los Angeles, CA, USA

normal">

justify">Introduction

justify;line-height:115%">
90jcwfIWJU67QAgl6YK0S0CoHGBkTxKLZGx5TGhvj5O2G0SRWNoz/78nu9wcxkFMGNg6quQqL6RA
0s5Y6ir5vt9lD1JwBDIwOMJKHpHlpr69KfdHjyxSmriSfYz+USnWPY7AufNIadK6MEJMx9ApD/oD
OlTrorhX2lFEilmcO2RdNtjC5xDF9pCuTyYBB5bi6bQ4syoJ3g9WQ0ymaiLzg5KdCXlKLjvcW893
SUOqXwnz5DrgnHtJTxOsQfEKIT7DmDSUCaxw7Rqn8787ZsmRM9e2VmPeBN4uqYvTtW7jvijg9N/y
JsXecLq0q+WD6m8AAAD//wMAUEsDBBQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAX3JlbHMvLnJl
bHOkkMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr2M4PBMnrbUb/Q94l/f/hMi1qR
JVI2sOt6UJgd+ZiDgffL8ekFlFSbvV0oo4EbChzGx4f9GRdb25HMsYhqlCwG5lrLq9biZkxWOiqY
22YiTra2kYMu1l1tQD30/bPm3wwYN0x18gb45AdQl1tp5j/sFB2T0FQ7R0nTNEV3j6o9feQzro1i
OWA14Fm+Q8a1a8+Bvu/d/dMb2JY5uiPbhG/ktn4cqGU/er3pcvwCAAD//wMAUEsDBBQABgAIAAAA
IQDWQ9bMNwIAAFMEAAAOAAAAZHJzL2Uyb0RvYy54bWysVM2O0zAQviPxDpbvNG22fxs1XS1dipCW
H2nhARzHaSwcj7HdJuUBljfgxIU7z9XnYOx0S7XABZGD5bHH38x830wWV12jyE5YJ0HndDQYUiI0
h1LqTU4/vF8/m1PiPNMlU6BFTvfC0avl0yeL1mQihRpUKSxBEO2y1uS09t5kSeJ4LRrmBmCExssK
bMM8mnaTlJa1iN6oJB0Op0kLtjQWuHAOT2/6S7qM+FUluH9bVU54onKKufm42rgWYU2WC5ZtLDO1
5Mc02D9k0TCpMegJ6oZ5RrZW/gbVSG7BQeUHHJoEqkpyEWvAakbDR9Xc1cyIWAuS48yJJvf/YPmb
3TtLZJnT8ZQSzRrU6PD1y+Hbj8P3e5IGflrjMnS7M+jou+fQoc6xVmdugX90RMOqZnojrq2Fthas
xPxG4WVy9rTHcQGkaF9DiXHY1kME6irbBPKQDoLoqNP+pI3oPOF4eDGdpfMxXnG8u5heTmbDqF7C
sofnxjr/UkBDwianFsWP8Gx363xIh2UPLiGaAyXLtVQqGnZTrJQlO4aNso5frOCRm9KkzenlJJ30
DPwVYhi/P0E00mPHK9nkdH5yYlng7YUuYz96JlW/x5SVPhIZuOtZ9F3RHYUpoNwjpRb6zsZJxE0N
9jMlLXZ1Tt2nLbOCEvVKoyzjySwNY3Bu2HOjODeY5giVU09Jv135fnS2xspNjZH6RtBwjVJWMpIc
NO+zOuaNnRu5P05ZGI1zO3r9+hcsfwIAAP//AwBQSwMEFAAGAAgAAAAhAHU6YyXgAAAADQEAAA8A
AABkcnMvZG93bnJldi54bWxMj8FOwzAMhu9IvENkJG4saYGylaYTQpqQuFFg025ZY9qKxqmarCtv
j3eC22f51+/PxXp2vZhwDJ0nDclCgUCqve2o0fDxvrlZggjRkDW9J9TwgwHW5eVFYXLrT/SGUxUb
wSUUcqOhjXHIpQx1i86EhR+QePflR2cij2Mj7WhOXO56mSqVSWc64gutGfC5xfq7OjoNq+RlN35u
szmR+9XmdT9MlWwmra+v5qdHEBHn+BeGsz6rQ8lOB38kG0Sv4S59SDmqIVO3GYhzQql7pgNTsmSS
ZSH/f1H+AgAA//8DAFBLAQItABQABgAIAAAAIQC2gziS/gAAAOEBAAATAAAAAAAAAAAAAAAAAAAA
AABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhADj9If/WAAAAlAEAAAsAAAAAAAAA
AAAAAAAALwEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhANZD1sw3AgAAUwQAAA4AAAAAAAAA
AAAAAAAALgIAAGRycy9lMm9Eb2MueG1sUEsBAi0AFAAGAAgAAAAhAHU6YyXgAAAADQEAAA8AAAAA
AAAAAAAAAAAAkQQAAGRycy9kb3ducmV2LnhtbFBLBQYAAAAABAAEAPMAAACeBQAAAAA=
">


 Figure 1. (a) Schematic of in situ application of adhesive hydrogels in a mice calvarial defect model. (b) Representative micro-CT images for untreated defect, and defects treated with 7% and 15% bioadhesives on days 28 and 42 post-implantation.

Dental
implants have become the standard of care for partial or fully edentulous
patients, which has led to an increase in the number of patients affected by peri-implant
diseases (PIDs). These diseases are characterized by the inflammation of the
soft tissue surrounding the implants, infection, and bone loss around the
implants. Since implant placements continue increasing, it is predicted that
PIDs will become one of the most significant dental diseases of the future. In
addition, many patients do not have the adequate bone volume to support the
implant. Therefore, there is an unmet need to develop a multifunctional
adhesive hydrogel with combined osteoinductivity and
antimicrobial properties as a matrix for treatment of PIDs and periodontal bone
defects. In the current study, we aimed to engineer a novel antimicrobial and
osteoinductive hydrogel adhesives for this purpose, which are composed of
gelatin methacryloyl (GelMA), osteoinductive silicate nanoparticles (SN), and
antimicrobial peptide (AMP).

justify">Materials
and Methods

justify;line-height:115%"> font-family:" times new roman color:black> All
chemicals were purchased at analytical grade and used without further
purification. GelMA was synthesized through the methacrylation
of cold water fish skin gelatin (Sigma) with methacrylic
anhydride (Sigma), according to a procedure described previously [1]. Hydrogels
were photopolymerized using Eosin Y (0.1 mM) as photoinitiator, Triethanolamine " times new roman color:black>(1.5 %(w/v)) as a co-initiator and N-vinylcaprolactam
(1 %(w/v)) as a co-monomer. The hydrogel prepolymer solution containing 15
%(w/v) GelMA, 0.1 %(w/v) antimicrobial peptide (AMP) Tet213 (CPC Scientific,
CA, USA), 200 µg/ml osteoinductive nanoparticles (E.E.S Cosmetic Solutions, USA)
and photoinitiators, were mixed gently and photopolymerized for 60-120 sec
under visible light using a VALO® LED dental curing light (Ultradent Products Inc., 1000-3200 mW/cm2,
395-480).

justify">

justify">Results
and Discussion

justify;line-height:115%"> font-family:" times new roman color:black>The engineered hydrogels could be rapidly crosslinked in situ using the normal"> LED dental curing light. Our in
vitro
characterization demonstrated that SN-loaded GelMA-AMP hydrogels
exhibited high cytocompatibility and supported the growth of W-20-17 mouse bone
marrow stromal cells encapsulated inside the hydrogel. We also found that the
engineered hydrogels had high antimicrobial activity against both Gram-positive (G+) methicillin resistant Staphylococcus
aureus
(MRSA), and Gram-negative (G-) Porphyromonas
gingivalis (
font-family:" times new roman color:black>a pathogenic bacterium found in PIDs) and font-family:" times new roman major-bidi> E. coli bacteria due to the
presence of AMP. Additionally, 115%;font-family:" times new roman mso-fareast-font-family: mso-bidi-theme-font:major-bidi> the incorporation of SNs into the
engineered hydrogels induced osteogenic differentiation of the cells in
vitro.
Furthermore, our in vivo studies showed that the hydrogel precursor
could be readily delivered and photocrosslinked normal">in situ to seal calvarial bone defects in mice for up to 42 days (Figure
1
). Similarly, the bioadhesive was applied to large periodontal bone
defects in miniature pigs, showing promising bone regenerative capacity of the
engineered bioadhesive hydrogels.

justify">

justify">Conclusion

justify;line-height:115%"> line-height:115%;font-family:" times new roman mso-fareast-font-family: mso-bidi-theme-font:major-bidi>In this study, we synthesized
photocrosslinkable osteoinductive gelatin-based hydrogels that possessed high antimicrobial
properties and exhibited high cytocompatibility in vitro using W-20-17
cells. In adhesion, the in vivo application of adhesive hydrogels using both
small (mouse calvarial defect model) and large (periodontal bone defects in
minipigs) animals showed high stability and bone regenerative capacity. The
engineered hydrogel adhesives may constitute an effective strategy to prevent
bacterial infection and promote bone regeneration around dental implants.

justify;line-height:115%">

justify"> 107%;font-family:" times new roman mso-fareast-font-family: mso-bidi-theme-font:major-bidi>Acknowledgment

justify;line-height:115%">Authors
acknowledge the support from American Heart Association (AHA, 16SDG31280010), National
Institutes of Health (NIH) (R01EB023052; R01HL140618), C-DOCTOR (Center for
Dental, Oral, & Craniofacial Tissue & Organ Regeneration), and
University of California-Los Angeles.

justify">

References

[1] _Hlk527215146"> A. Assmann, A.Vegh, E. Shirzaei Sani,  G. Cheng, G. U.Ruiz-Esparza,
X. Wang, A. D. Lassaletta, S. Gangadharan,
A. S. Weiss, A. Khademhosseini, Biomaterials,
2017, 140, 115-127.

" times new roman mso-hansi-theme-font:major-bidi mso-bidi-theme-font:major-bidi>