(562ac) Magnetically Recoverable Carbon-Coated Iron Carbide for Organic and Arsenic Adsorptive Removal
- Conference: AIChE Annual Meeting
- Year: 2019
- Proceeding: 2019 AIChE Annual Meeting
- Group: Environmental Division
- Session:
- Time: Wednesday, November 13, 2019 - 3:30pm-5:00pm
Magnetic particles, generally nanostructured and magnetite-based, have been used extensively to remove drinking water contaminants. Compositions alternative to Fe3O4 could address long-standing issues of magnetic recoverability and materials integrity in real waters. The stability, magnetic separability, and adsorptive properties of nanostructured carbon-coated iron carbide (Fe3C@C) were compared to those of Fe3O4 and other common iron oxide-based nanomaterials. Experimental results show that (i) Fe3C@C is chemically stable in simulated drinking water, (ii) can be separated from water magnetically under flow with greater than 99% recovery, and (iii) has a 100´ higher adsorption capacity for methylene blue (39.8 mg/g) than Fe3O4 and a comparable adsorption capacity for arsenic (168 µg/g). These properties suggest Fe3C@C as a viable magnetic engineered nanomaterial (ENM) for the removal of organics and oxo-anions with further development.