(535g) Microgel-Covered Drops: Effects on Mass Transfer and Fluid Dynamics
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Interfacial Transport Phenomena
Wednesday, November 13, 2019 - 2:00pm to 2:15pm
In this contribution, we present the impact of cross-linked poly(N-isopropylacrylamide) (PNIPAM) microgels on mass transport through a liquid-liquid interface. With regard to application in disperse liquid-liquid systems, the investigation is based on rising droplets. Therefore, two aspects need to be considered: The mass transport resistance of the microgel layer and the fluid dynamics of the microgel-covered drop resulting from the interfacial conditions. The effect of microgels on both phenomena is determined experimentally and compared to existing model approaches.
The mass transfer resistance of the microgel layer is determined at a flat interface. Taking the cross-linked character of the microgels into account, we quantify the impact of the mass transfer agent size and molecular weight, respectively. Furthermore, the mass transport resistance is related to microgel properties such as cross-linker content.
In addition, the interfacial conditions of microgel-covered drops in a continuous flow field are investigated by their fluid dynamic behavior. The sedimentation velocity of drops as a function of their diameter can be correlated to the interfacial mobility. We determined these effects as a function of the cross-linker content and the spreading of the microgels at the interface, respectively. [6] At drops with a mobile interface, momentum transfer at the interface induces an internal circulation. This circulation leads to an enhanced mass transfer as the dispersed phase is well mixed, which overcomes diffusion limitation. [7] Therefore, the second part of this contribution focuses on the impact of the microgels on mass transport by their effect on the fluid dynamics of drops.
References
- W. Richtering, Langmuir : the ACS journal of surfaces and colloids 28, 50 (2012).
- M. Destribats, V. Lapeyre, M. Wolfs, E. Sellier, F. Leal-Calderon, V. Ravaine, and V. Schmitt, Soft Matter 7, 17 (2011).
- M. Destribats, M. Eyharts, V. Lapeyre, E. Sellier, I. Varga, V. Ravaine, and V. Schmitt, Langmuir 30, 7 (2014).
- O. S. Deshmukh, A. Maestro, M. H. G. Duits, van den Ende, Dirk, M. C. Stuart, and F. Mugele, Soft Matter 10, 36 (2014).
- B. Brugger and W. Richtering, Langmuir 24, 15 (2008).
- M. Faulde, E. Siemes, D. Wöll, A. Jupke, Polymers 10, 8 (2018)
- M. Wegener, N. Paul, and M. Kraume, International Journal of Heat and Mass Transfer 71 (2014).