(425g) Synergy between Different Active Sites in Affecting CO2 Hydrogenation Kinetics and Selectivity
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Thermochemical CO2 Reduction II: C2+ Chemicals
Tuesday, November 12, 2019 - 5:18pm to 5:36pm
We report the synthesis of Cu-In-Zr-O (CIZO) mixed oxide-based nanomaterials and study of the materials as CO2 hydrogenation catalyst. Influences of the two components, as well as their inter-component interactions and compositions, on the CO2 hydrogenation were studied. Mechanistic insights of CO2 hydrogenation mechanism and the synergy between different active sites were obtained using in situ DRIFTS study. It was discovered that defective In2O3 sites have strong adsorption of CO2, which results in a large barrier for direct CO2 dissociation and thus suppresses CO production. Metallic Cu sites adsorb and dissociate H2 for providing adsorbed hydrogen atoms, which react with adsorbed CO2 at adjacent In2O3 sites following the formate-methoxy-methanol pathway. Bifunctionality of the Cu and In2O3 active sites and their cooperation create their synergy in CO2 hydrogenation catalysis and results in promotion in both CO2 conversion and methanol selectivity compared to the individual components. A high selectivity towards DME production was achieved when zeolite was used in combination with CIZO catalyst. It was discovered that DME could be formed via a shortcut methoxy-DME pathway instead of a typical methoxy-methanol-DME route, which was attributed to synergy between CIZO sites and zeolite acid sites. The use of different active sites and the discovery of their synergy in promoting both CO2 hydrogenation kinetics and selectivity demonstrate an effective strategy to develop active and selective catalyst materials.