(41a) MAiNGO – McCormick-based Algorithm for Mixed-Integer Nonlinear Global Optimization

Authors: 
Mitsos, A., RWTH Aachen University
Najman, J., RWTH Aachen University
Bongartz, D., RWTH Aachen University
Sass, S., RWTH Aachen University
Burre, J., RWTH Aachen University
Djelassi, H., RWTH Aachen University
Huster, W. R., RWTH Aachen University
Karacasulu, K., RWTH Aachen University
Schweidtmann, A. M., RWTH Aachen University

MAiNGO (McCormick-based
Algorithm for mixed-integer Nonlinear
Global Optimization) is a deterministic global
optimization software for the solution of mixed-integer nonlinear programs
(MINLPs), to be published open source. It is applicable to MINLPs consisting of
factorable Lipschitz continuous functions. MAiNGO supports procedural modeling and
is thus convenient for formulating optimization problems in a reduced space.
This can result in computational advantages for problems found in flowsheet
optimization (Bongartz & Mitsos, 2017; 2018), optimization with artificial
neural networks embedded (Schweidtmann & Mitsos, 2019; Rall et al. 2018),
and optimization of hybrid data-driven/mechanistic models (Schweidtmann et al.,
2019). The main distinction of MAiNGO compared to state-of-the-art global
solvers such as BARON (Khajavirad & Sahinidis, 2018), ANTIGONE (Misener
& Floudas, 2014), SCIP (Vigerske et al, 2017), COUENNE (Belotti et al.,
2009), and LINDOGLOBAL (Lin & Schrage, 2009), are i) the operation in the
original optimization variable space through the application of McCormick
relaxations (McCormick, 1976; Tsoukalas & Mitsos, 2014) and ii) flexibility
in model formulation that allows to hide parts of the model from the solver. Valid
convex and concave relaxations together with its subgradients (Mitsos et al.,
2009) are computed through the open-source library MC++ (Chachuat et al., 2015).
MAiNGO implements relaxations for various intrinsic functions, in particular functions
relevant to process systems engineering (Najman & Mitsos, 2016; Najman et
al., 2019). In addition to the spatial branch-and-bound and some well-known
bound tightening techniques, MAiNGO also contains specialized methods for
tightening of McCormick relaxations (Najman & Mitsos, 2019). We present the
algorithmic framework of MAiNGO along with computational applications to various
problems from chemical engineering and power systems. Finally, we briefly
introduce the user interface and possibilities for user-implemented heuristics
and extensions.

Acknowledgements: We
would like to thank Benoit Chachuat for providing MC++ and supporting us in
extending it. This work has received funding from the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) Improved McCormick Relaxations for
the efficient Global Optimization in the Space of Degrees of Freedom
MA
1188/34-1. The authors gratefully acknowledge additional funding by the German
Federal Ministry of Education and Research (BMBF) within the Kopernikus Project
P2X: Flexible use of renewable resources - exploration, validation and
implementation of `Power-to-X' concepts
. This work was supported by the Helmholtz Association
under the Joint Initiative Energy System 2050 - A Contribution of the
Research Field Energy
. The authors
gratefully acknowledge the financial support of the Kopernikus project SynErgie
by the Federal Ministry of Education and Research (BMBF) and the project
supervision by the project management organization Projektträger Jülich (PtJ).

normal;text-autospace:none"> 

normal;text-autospace:none"> 

normal;text-autospace:none">Belotti, P., Lee, J.,
Liberti, L., Margot, F. & Wächter, A. Branching and bounds tightening techniques
for non-convex MINLP. Optimization
Methods and Software
, 2009,
24(4-5):597-634.

normal;text-autospace:none"> 

normal;text-autospace:none">Bongartz, D. &
Mitsos, A. Deterministic global
optimization of process flowsheets in a reduced space using McCormick
relaxations. Journal of Global
Optimization
, 2017,
69(4):761-796.

normal;text-autospace:none"> 

Bongartz, D.
& Mitsos, A. Deterministic Global Flowsheet Optimization: Between
Equation-Oriented and Sequential-Modular Methods. AIChE Journal, 2019,
65, 1022-1034.

normal;text-autospace:none">Chachuat,
B., Houska, B., Paulen, R., Perić, N., Rajyaguru, J. & Villanueva, M.
Set-theoretic approaches in analysis, estimation and control of nonlinear
systems. IFAC-PapersOnLine, 2015, 48(8):981-995 https://omega-icl.github.io/mcpp/

normal;text-autospace:none"> 

normal;text-autospace:none">Gleixner, A.,
Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gotwwald, R. L., Hendel, G.,
Hojny, C., Koch, T., Lübbecke, M. E., Maher, S. J., Miltenberger, M., Müller,
B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C.,
Serrano, F., Shinano, Y., Viernickel, J., M., Walter, M., Wegscheider, F.,
Witt, J. T. & Witzig , J. The SCIP Optimization Suite 6.0. Technical
Report
, 2019, http://www.optimization-online.org/DB_HTML/2018/07/6692.html

normal;text-autospace:none"> 

normal;text-autospace:none">Khajavirad, A. &
Sahinidis, N. V. A hybrid LP/NLP paradigm for global optimization relaxations. Mathematical
Programming Computation
, 2018, 10(3):383-421.

normal;text-autospace:none"> 

normal;text-autospace:none">Lin, Y. &
Schrage, L. The global solver in the LINDO API. Optimization Methods and
Software
, 2009, 24(4-5):657-668.

normal;text-autospace:none"> 

normal;text-autospace:none">McCormick, G.
Computability of global solutions to factorable nonconvex programs: Part I -
Convex underestimating problems. Mathematical
Programming
, 1976, 10:147-175.

normal;text-autospace:none"> 

normal;text-autospace:none">Misener, R. & Floudas,
C. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of
Nonlinear Equations. Journal of Global
Optimization
, 2014, 59:503-526.

normal;text-autospace:none"> 

normal;text-autospace:none">Mitsos, A., Chachuat,
B. & Barton, P. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, 2009, 20(2):573-601.

normal;text-autospace:none"> 

normal;text-autospace:none">Najman, J. &
Mitsos, A. Convergence order of McCormick relaxations of LMTD function in heat
exchanger networks. In 26th
European Symposium on Computer Aided Process Engineering
, 2016, 1605-1610.

normal;text-autospace:none"> 

normal;text-autospace:none">Najman, J., Bongartz,
D. & Mitsos, A. Convex and Concave Relaxations of Property and Costing
Models in Process Engineering. Submitted
for publication
, 2019.

normal;text-autospace:none"> 

normal;text-autospace:none">Najman, J. &
Mitsos, A. Tighter McCormick relaxations through subgradient propagation. In press: Journal of Global Optimization, 2019.

normal;text-autospace:none"> 

normal;text-autospace:none">Rall, D., Menne, D.,
Schweidtmann, A., Kamp, J., von Kolzenberg, L., Mitsos, A. & Wessling, M.
Rational design of ion separation membranes. 9.0pt">Journal of Membrane Science, 2018,
569:209.

normal;text-autospace:none"> 

normal;text-autospace:none">Schweidtmann, A. M.
& Mitsos, A. Deterministic  global optimization with artificial neural
networks embedded. Journal of
Optimization Theory and Applications
, 2019,
180(3):925-948.

normal;text-autospace:none"> 

normal;text-autospace:none">Schweidtmann, A.,
Huster, W. R., Lüthje, J. & Mitsos, A. Deterministic global process
optimization: Accurate (single-species) properties via artificial neural
networks. Computers & Chemical Engineering, 2019, 121:67-74.

normal;text-autospace:none"> 

normal;text-autospace:none">Tsoukalas A. &
Mitsos, A. Multivariate McCormick relaxations. Journal of Global Optimization, 2014, 59:633-662.

normal;text-autospace:none">