(39f) The Production of Long Chain Hydrocarbons through the Catalytic Upgrade of Biomass-Based Acetone, Butanol and Ethanol (ABE) | AIChE

(39f) The Production of Long Chain Hydrocarbons through the Catalytic Upgrade of Biomass-Based Acetone, Butanol and Ethanol (ABE)


Ketabchi, E. - Presenter, University of Surrey
Ramirez-Reina, T., University of Surrey
Arellano-Garcia, H., Brandenburgische Technische Universität Cottbus-Senftenberg
Pastor-Perez, L., University of Surrey
One of the main issues that many industrial sectors such as oil refineries have been facing nowadays is their sole dependency on fossil fuel. Not only have price fluctuations affected the products, but their environmental impact is an ever present problem that should be addressed. This has led to the search for alternatives such as biomass based processes in order to reduce the dependency on fossil fuel.

Bio-refinery processes, fed by biomass, produce high value chemicals and materials with the advantage of reduced environmental drawbacks, such as CO2 emissions, when compared to the conventional refinery. For the benefit of both systems, an integration approach has been considered connecting bio-refining and conventional refining processes together.

In this work we focus on the production of long chain hydrocarbons while maintaining production of chemicals that already originate from biomass such as Acetone, Butanol and Ethanol (ABE). The ABE used for this process is obtained as a product of sugar fermentation using the bacteria genus Clostridium. Through the upgrading and conversion of ABE, the products obtained will then be incorporated in the proposed integration system, connecting the conventional oil refinery to this process. A reaction involving a complex reaction network towards upgrading ABE with the aim of producing valuable products using economically viable catalysts has been carried out. The vast majority of research in this area either involves the separation of ABE after fermentation to be used in the chemical/or transportation industry that incurs large costs, or noble metal catalysts are used to upgrade this feed, which would also not be economically viable. However, our research has surpassed the necessity of noble metals, leading to a significant cost decrease that also produces outstanding results. The catalysts required for this process were synthesised successfully through the wetness incipient method and characterised by XRD, Raman, BET, TPR and N2 Isotherm. The reaction consists of the self-condensation and cross condensation of the alcohols and acetone, respectively, using a variety of active metals on basic supports as catalysts, at high temperatures and pressure in a batch reactor.

The results have shown exceptional performance for the catalysts in terms of conversion and selectivity, having conversions as high as 90%. The catalysts have proven to yield a range of C3-C15 hydrocarbons identified to be of need in the chemical industry. In conclusion, our route has produced valuable chemicals proven to have a considerably higher market value than the simple alcohol reactants, useful for both the petrochemical and the transportation industries, through the use of novel and economically favourable catalysts.