(377m) High Vying Ti3C2Tx Mxene Nanosheets with Mehpa to Release Mercury from a Loaded Oil Phase | AIChE

(377m) High Vying Ti3C2Tx Mxene Nanosheets with Mehpa to Release Mercury from a Loaded Oil Phase

Authors 

Laki, S. - Presenter, Drexel University
Arabi Shamsabadi, A., Drexel University
Alimohammadi, F., Temple University
Anasori, B., Drexel University
Soroush, M., Drexel University
Solvent extraction is a method of selectively removing metal ions present in very low concentration in an aqueous medium. In recent years there has been an increased interest in using the technique in wastewater treatment1-4. Because metals are usually not soluble in organic solvents, the process requires the introduction of an extractant that will combine with the metal ion to form an organic soluble complex. The loaded solvent is then stripped with a suitable acidic aqueous phase, and the metal is transferred from the oil phase to the desired aqueous solution or stripping phase. The advent of nanotechnology has provided a great opportunity for the invention of desired nanomaterials with large surface-to-volume ratios and unique functionalities to treat pollutants. Nanomaterials now play a key role in environmental remediation and are used for the treatment of natural waters, sediments, soils, and industrial and domestic waste water5-9. Two-dimensional (2D) nanomaterials have been found to be efficient adsorbents for heavy metals10-12. Their abundant active sites, negative zeta potential, excellent dispersity in water, and large surface areas have made them ideal adsorbents for environment remediation11-23. The appealing features of 2D nanomaterials have motivated us to use them as oil-phase strippers in solvent extraction. Sorption of mercury removal from aqueous solutions has been studied by many researchers24-27. However, heavy metals stripping from an oil phase has not been reported yet.

In this paper, we present results from our study of mercury stripping from a loaded oil phase. First, we conducted solvent extraction studies to transfer mercury ions from drinking water to an organic phase (kerosene) by using di(2-ethylhexyl) phosphoric ethyl hexyl) phosphoric acid (MEHPA) as the extractant. We determined the mechanism for the formation of MEHPA-Hg complex by assuming a thermodynamically ideal extraction system and using the Ritcey and Ashbrook model28-29. We then used different 2D nanomaterial suspensions like GO, MoS2, MnO2 and Ti3C2Tx MXene as stripping reagents. The 2D material suspensions were added to a mixture of the loaded organic phase (kerosene containing MEHPA–Hg complex) obtained from solvent extraction. The effects of the parameters such as pH, the contact time, concentrations of extractant and 2D nanomaterial, and temperature were investigated. The equilibrium stripping data were evaluated using the Langmuir isotherm model.

Keywords: Mercury, 2D Nanomaterials, Wastewater Treatment, MXene, Stripping Reagent

References

  1. Laki, S.; Shamsabadi, A. A.; Kargari, A., Comparative solvent extraction study of silver (I) by MEHPA and Cyanex 302 as acidic extractants in a new industrial diluent (MIPS). Hydrometallurgy 2016, 160, 38-46.
  2. Ikeda, S.; Mori, T.; Ikeda, Y.; Takao, K., Microwave-Assisted Solvent Extraction of Inert Platinum Group Metals from HNO3(aq) to Betainium-Based Thermomorphic Ionic Liquid. ACS Sustainable Chemistry & Engineering 2016, 4 (5), 2459-2463.
  3. Vander Hoogerstraete, T.; Onghena, B.; Binnemans, K., Homogeneous Liquid–Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid. The Journal of Physical Chemistry Letters 2013, 4 (10), 1659-1663.
  4. Wang, Y.; Liu, H.; Fan, J.; Liu, X.; Hu, Y.; Hu, Y.; Zhou, Z.; Ren, Z., Recovery of Lithium Ions from Salt Lake Brine with a High Magnesium/Lithium Ratio Using Heteropolyacid Ionic Liquid. ACS Sustainable Chemistry & Engineering 2019, 7 (3), 3062-3072.
  5. Ray, P. Z.; Shipley, H. J., Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Advances 2015, 5 (38), 29885-29907.
  6. Alipour, V.; Nasseri, S.; Nodehi, R. N.; Mahvi, A. H.; Rashidi, A., Preparation and application of oyster shell supported zero valent nano scale iron for removal of natural organic matter from aqueous solutions. Journal of Environmental Health Science and Engineering 2014, 12 (1), 146.
  7. Hu, Q.; Sun, D.; Wu, Q.; Wang, H.; Wang, L.; Liu, B.; Zhou, A.; He, J., MXene: a new family of promising hydrogen storage medium. The Journal of Physical Chemistry A 2013, 117 (51), 14253-14260.
  8. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341 (6153), 1502-1505.
  9. Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society 2013, 135 (43), 15966-15969.
  10. Naguib, M.; Gogotsi, Y., Synthesis of two-dimensional materials by selective extraction. Accounts of chemical research 2014, 48 (1), 128-135.
  11. Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S., Two-Dimensional Ti3C2T x MXene Nanosheets for Efficient Copper Removal from Water. ACS Sustainable Chemistry & Engineering 2017, 5 (12), 11481-11488.
  12. Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society 2014, 136 (11), 4113-4116.
  13. Guo, J.; Peng, Q.; Fu, H.; Zou, G.; Zhang, Q., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. The Journal of Physical Chemistry C 2015, 119 (36), 20923-20930.
  14. Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J., Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 2012, 50 (13), 4856-4864.
  15. Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS nano 2010, 4 (7), 3979-3986.
  16. Tiwari, J. N.; Mahesh, K.; Le, N. H.; Kemp, K. C.; Timilsina, R.; Tiwari, R. N.; Kim, K. S., Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 2013, 56, 173-182.
  17. Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS applied materials & interfaces 2015, 7 (3), 1795-1803.
  18. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y., 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced Materials 2014, 26 (7), 992-1005.
  19. Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional, ordered, double transition metals carbides (MXenes). Acs Nano 2015, 9 (10), 9507-9516.
  20. Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y., Intercalation and delamination of layered carbides and carbonitrides. Nature communications 2013, 4, 1716.
  21. Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y., Amine‐assisted delamination of Nb2C MXene for Li‐Ion energy storage devices. Advanced Materials 2015, 27 (23), 3501-3506.
  22. Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y., Efficient Antibacterial Membrane based on Two-Dimensional Ti 3 C 2 T x (MXene) Nanosheets. Scientific reports 2017, 7 (1), 1598.
  23. Li, G.; Tan, L.; Zhang, Y.; Wu, B.; Li, L., Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size. Langmuir 2017, 33 (36), 9000-9006.
  24. Li, B.; Zhang, Y.; Ma, D.; Shi, Z.; Ma, S., Mercury nano-trap for effective and efficient removal of mercury (II) from aqueous solution. Nature communications 2014, 5, 5537.
  25. Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S., Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society 2017, 139 (7), 2786-2793.
  26. Huang, N.; Zhai, L.; Xu, H.; Jiang, D., Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journal of the American Chemical Society 2017, 139 (6), 2428-2434.
  27. Qu, Z.; Yan, L.; Li, L.; Xu, J.; Liu, M.; Li, Z.; Yan, N., Ultraeffective ZnS Nanocrystals Sorbent for Mercury(II) Removal Based on Size-Dependent Cation Exchange. ACS Applied Materials & Interfaces 2014, 6 (20), 18026-18032.
  28. Gamino Arroyo, Z.; Stambouli, M.; Pareau, D.; Buch, A.; Durand, G.; Avila Rodriguez, M., Thiosubstituted organophosphorus acids as selective extractants for Ag (I) from acidic thiourea solutions. Solvent Extraction and Ion Exchange 2008, 26 (2), 128-144.
  29. Baba, A. A.; Adekola, F. A., Beneficiation of a Nigerian sphalerite mineral: Solvent extraction of zinc by Cyanex® 272 in hydrochloric acid. Hydrometallurgy 2011, 109 (3-4), 187-193.

Topics