(208a) Adsorption and Activation of O2 over Cu(I/II) Single-Site | AIChE

(208a) Adsorption and Activation of O2 over Cu(I/II) Single-Site

Authors 

Wang, F. R. - Presenter, University College London
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);}

Template Wang, Ryan 2 1 2018-04-05T09:53:00Z 2019-04-14T07:52:00Z 2019-04-14T07:52:00Z 1 978 5577 University College London 46 13 6542 16.00

false false false false EN-GB ZH-CN X-NONE H4sIAAAAAAAEAKtWckksSQxILCpxzi/NK1GyMqwFAAEhoTITAAAA H4sIAAAAAAAEAKtWcslP9kxRslIyNDY0szQ0MbUwNTQ0MwbyLJV0lIJTi4sz8/NACgyNagE2tEjbLQAAAA== <ENInstantFormat><Enabled>1</Enabled><ScanUnformatted>1</ScanUnformatted><ScanChanges>1</ScanChanges><Suspended>1</Suspended></ENInstantFormat> <ENLayout><Style>Nature Materials</Style><LeftDelim>{</LeftDelim><RightDelim>}</RightDelim><FontName>Calibri</FontName><FontSize>11</FontSize><ReflistTitle></ReflistTitle><StartingRefnum>1</StartingRefnum><FirstLineIndent>0</FirstLineIndent><HangingIndent>720</HangingIndent><LineSpacing>0</LineSpacing><SpaceAfter>0</SpaceAfter><HyperlinksEnabled>0</HyperlinksEnabled><HyperlinksVisible>0</HyperlinksVisible><EnableBibliographyCategories>0</EnableBibliographyCategories></ENLayout> <Libraries><item db-id="xapafwpfs505zyew2xopf0sb0p09epzx02p2">ERC<record-ids><item>15</item><item>1287</item><item>5385</item><item>5387</item><item>5392</item><item>5394</item><item>5395</item><item>5396</item><item>5817</item><item>5939</item><item>5940</item><item>5941</item><item>5942</item><item>5943</item><item>5944</item><item>5946</item><item>6935</item><item>6948</item><item>9395</item><item>9396</item><item>9410</item><item>9412</item><item>9413</item><item>9414</item><item>9419</item><item>9422</item><item>9423</item><item>9516</item><item>9545</item><item>9546</item><item>9548</item><item>9551</item></record-ids></item></Libraries>


/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableGrid {mso-style-name:"Table Grid"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-priority:59; mso-style-unhide:no; border:solid windowtext 1.0pt; mso-border-alt:solid windowtext .5pt; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-border-insideh:.5pt solid windowtext; mso-border-insidev:.5pt solid windowtext; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


normal">Adsorption
and activation of O2 over Cu(I/II) single-site on CeO2
surface

mso-bidi-font-style:italic">Liqun Kang,1 Bolun Wang,1*
Qiming Bing,2 Michal Zalibera,3 Robert Büchel,4
italic">Ruoyu Xu,1 italic">Qiming Wang,1 Yiyun Liu,1Diego
Gianolio,5 Emma Gibson,6 Mohsen Danaie,7
Christopher Allen,7 italic">Qian He,8 Shaoliang Guan,5,10 Anton Savitsky,9 minor-fareast;mso-ansi-language:EN-GB;mso-bidi-font-style:italic"> Chris
Kay,1 Sotiris E. Pratsinis,4
Wolfgang
Lubitz,9
Jing-yao Liu,3 Feng Ryan Wang1*

text-align:justify;text-justify:inter-ideograph"> normal">Abstract: Efficient and selective activation of molecular oxygen at
mild conditions is important for chemical transformation and energy conversion.
Here we minor-fareast">report the selective O2 adsorption on a
[Cu(I)O2]3- single-site over CeO2
surface. Isolated single Cu sites achieve the lowest HOMO with maximised
electron withdrawing effect from Ce4+. O2 is adsorbed on
the Cu single-site, forming normal;mso-bidi-font-style:italic">electrophilic [Cu(II)O2(h2-O2)]4-
at 298 K, and then dissociating into O2- and forming nucleophilic
[Cu(II)O4]6- at 453 K. The evolution of adsorbed O2
species on Cu is tracked by operando
XAS, EPR, NAP-XPS/NEXAFS and DFT simulation. The Cu(I)/(II)
single-sites are 10 times more active than that of the CuO clusters in
CO oxidation minor-fareast">, showing a turnover frequency of 0.028
± 0.003 s-1
at 373 K and 0.01 bar normal">PCO. mso-fareast-theme-font:minor-fareast"> The transition between [Cu(I)O2]3-
and [Cu(II)O2( " times new roman mso-symbol-font-family:symbol> Symbol">h2-O2)]4-/[Cu(II)O4]6-sites
are found in CO rich and lean conditions, which is the key for the high
catalytic activity. normal;mso-bidi-font-style:italic">The advantage to activate molecular O2
into electrophilic
species is important for selective oxidation
reactions, such as epoxidation of propene and partial oxidation of methane.

text-align:justify;text-justify:inter-ideograph"> normal"> italic">Discussion

text-align:justify;text-justify:inter-ideograph"> .15pt;font-style:normal;mso-bidi-font-style:italic">The innovations in this
work are:

text-align:justify;text-justify:inter-ideograph;text-indent:-18.0pt;mso-list:
l2 level1 lfo3"> font-style:normal;mso-bidi-font-style:italic">1.     We
use Ce4+ to reduce the HOMO energy of Cu(I/II) single-sites in order
to selectively adsorption of O2, forming electrophilic

[Cu(II)O2( " times new roman mso-symbol-font-family:symbol> Symbol">h2-O2)]4- at
298 K and nucleophilic
[Cu(II)O4]6- at
453 K.

text-align:justify;text-justify:inter-ideograph;text-indent:-18.0pt;mso-list:
l2 level1 lfo3"> mso-bidi-font-style:italic">2.     The advantage
in activating molecular O2 into electrophilic
species is
important for selective oxidation reactions, such as epoxidation of propene and
partial oxidation of methane. italic">

text-align:justify;text-justify:inter-ideograph;text-indent:-18.0pt;mso-list:
l2 level1 lfo3"> mso-bidi-font-style:italic">3.     The
combination of operando Soft X-ray
(NEXAFS), Hard X-ray (XAS), EPR techniques and DFT simulation reveals the electronic
structure of adsorbed species and their evolution under different conditions.

text-align:justify;text-justify:inter-ideograph;text-indent:-18.0pt;mso-list:
l2 level1 lfo3">4.     For the first time, we
quantify the absolute Cu(II) single-site loading over CeO2 surface via EPR.
The highest absolute amount of Cu(II) single-site over CeO2
surface is obtained in 1wt% CuO-CeO2.

text-align:justify;text-justify:inter-ideograph">


page-break-before:always">

" times new roman>

inter-ideograph;line-height:normal"> " times new roman>Molecular O2 is the simplest oxidant for
combustion, oxidation and electrochemical reactions. In the search for
catalytic active centres for selective O2 adsorption and activation,
here we report a Cu(I)/Cu(II) single-site system over a crystalline CeO2
surface. The neighbour Ce4+ reduces the highest occupied molecular
orbital (HOMO) energy of Cusingle-sites, resulting in the lowered
work function (7.83 eV) comparing to that of the Cu2O/CuO clusters
(6.07 eV), calculated from ultraviolet photoelectron spectroscopy (UPS). Such
electron withdrawing effect of Ce4+ is maximised with isolated
single Cu sites.

inter-ideograph;line-height:normal"> " times new roman>The highest Cu single-site loading is 0.55wt%, as
confirmed by quantifying the feature peak of Cu(II) monomer in electron
paramagnetic resonance (EPR) spectra. The kinetic
studies of CO oxidation demonstrate a clear difference in active species. Below
1wt% CuO loading, the similar turnover frequencies (TOFs) and activation
energies Ea are obtained
(Fig. 1a). The content of CuO clusters increases with CuO loading beyond 1wt%,
leading to larger Ea and
smaller TOF. The CO conversion exhibits a linear relationship with the Cu
monomer EPR intensity (Fig. 1b), indicating identical Cu single-sites as
dominant active species with CuO loading below 1 wt%. A dynamic shift between
the [Cu(II)O4]6- and [Cu(I)O2]3-
upon CO lean and rich conditions is observed at 453 K normal">via operando X-ray
adsorption fine structure (XAFS) (Fig. 1c-e). In comparison, CuO clusters are
reduced to metallic Cu under CO rich condition.

text-align:center;page-break-after:avoid">

inter-ideograph;line-height:normal">Figure 1. a, italic">CO conversion as a function of Cu(II) single-site EPR intensity. b, TOF and activation energy as a function of Cu
loading. normal">c, Gas concentration at the outlet of operando XAFS reactor
as a function of time. d italic">, Contour map of the first derivative XANES spectra. e, Corresponding change of
coordination number in Cu-O, Cu-Ce (1) and Cu-Ce (2) scattering as a function
of time. .15pt;font-style:normal;mso-bidi-font-style:italic">

inter-ideograph;line-height:normal"> " times new roman>The difference in catalytic behaviours between Cu
single-site and CuO clusters suggests the different O2 activation
mechanism. Near edge X-ray absorption fine structure (NEXAFS) and Spin-polarised
density functional theory (DFT) simulations are performed to investigate the
surface chemistry of Cu single-site. Under reductive environment, a [Cu(I)O2]3-
site is identified by Cu L3 edge and O K edge NEXAFS (Fig. 2a
right). DFT simulation shows that a single Cu(0) atom is oxidized into Cu(I)
which coordinates with two surface oxygen ions to form a [Cu(I)O2]3- site (Fig. 2a left).
Upon O2 adsorption at 298 K, an electrophilic species [Cu(I/II)O2( symbol;mso-symbol-font-family:Symbol">h2-O2)]5/4-
is formed, showing the possible oxidation from Cu(I) to Cu(II). The adsorbed symbol;mso-symbol-font-family:Symbol">h2-O2 is
different from the lattice O2-, as determined in the O K edge NEXAFS
(Fig. 2b right). Raman spectroscopy reveals an O-O stretch at 830 cm-1,
confirming the presence of Symbol;mso-ascii-font-family:" times new roman mso-bidi-font-family: symbol>h2-O2. The
adsorbed " times new roman>h2-O2 can
dissociate into 2 O2- at 453 K, resulting in completed oxidised [Cu(II)O4]6-
site and lattice O2- (Fig. 2c). The temperature is in consistent
with the calculated 1.41 eV energy barrier for this transition calculated from
DFT simulation. Finally, CO reduces [Cu(II)O4]6-,
resuming the original [Cu(I)O2]3-.

line-height:normal">

text-align:justify;text-justify:inter-ideograph"> normal">Figure 2 | Dynamics
in O2 adsorption and activation
SimSun;mso-fareast-theme-font:minor-fareast"> normal">tracked by the Cu L3 edge and O K edge of NEXAFS. a DFT simulation and NEXAFS
of [Cu(I)O2]3-,
showing Cu(I) and lattice O2-. b,
DFT simulation minor-fareast"> and NEXAFS of [Cu(I/II)O2(h2-O2)]5/4-upon
O2 adsorption at 298 K. The undissociated h2-O2
adsorbed on Cu single-site is stable in UHV. normal">c, DFT simulation mso-fareast-theme-font:minor-fareast"> and NEXAFS of [Cu(II)O4]6-
with dissociated O2-. The O K edge spectrum is similar to that of [Cu(I)O2]3-, while only Cu(II)
is visible at Cu L3 edge adsorption. normal">

text-align:justify;text-justify:inter-ideograph"> .15pt;font-style:normal;mso-bidi-font-style:italic">The operando .15pt;font-style:normal;mso-bidi-font-style:italic"> NEXAFS and Raman results
confirmed the existence and stability of the
undissociated h2-O2
species over Cu, which is predicted by the DFT simulation. We hypothesise that
the electrophilicity of the Cu single-site resulted by the maximised electron
withdrawing effect of CeO2 support would facilitate the formation
and stabilisation of the " times new roman mso-symbol-font-family:symbol> Symbol">h2-O2 species adsorbed on Cu. Such
an electrophilic O species is considered as a better oxidant towards the
epoxidation of ethylene compared to nucleophilic O species. normal">

text-align:justify;text-justify:inter-ideograph"> normal">

Topics