(116d) Comparison of Product Distribution, Content and Fermentability of Biomass in a Hybrid Thermochemical/Biological Processing Platform | AIChE

(116d) Comparison of Product Distribution, Content and Fermentability of Biomass in a Hybrid Thermochemical/Biological Processing Platform


Jarboe, L. - Presenter, Iowa State University
Chi, Z., Dalian University of Technology
Zhao, X., Iowa State University
Daugaard, T., Iowa State University
Dalluge, D. L., Iowa State University
Rover, M. R., Iowa State University
Johnston, P. A., Iowa State University
Salazar, A., Iowa State University
Chavez-Santoscoy, M., Iowa State University
Smith, R. G., Iowa State University
Brown, R., Iowa State University
Wen, Z., Iowa State University
Zabotina, O., Iowa State University
Thermochemical processing is a promising method for the rapid depolymerization of biomass. This study investigated switchgrass, corn stover, red oak, hybrid poplar, and loblolly pine in terms of heteropolymer and elemental composition, and the distribution and composition of the fast pyrolysis products. Corn stover differed from other biomass types in that less of the biomass was recovered as sugar or phenolic oil (PO) and more of the biomass was recovered as bio-char and bio-gas. The sugar-rich aqueous stream recovered from the bio-oil heavy fraction was characterized in terms of sugar content and distribution, inhibitor content, and ability to support production of ethanol by Escherichia coli KO11+lgk as a model biorenewable product. Levoglucosan was the most abundant sugar from each type of biomass, followed by either xylose or cellobiosan. For hybrid poplar, cellobiosan accounted for 30 wt% of the total sugar pool. Each of the sugar streams also contained a variety of inhibitors, particularly 5-hydroxymethylfurfural (5-HMF) and methylcyclopentenolone. Methylcyclopentenolone, maple lactone, was found to decrease the specific growth rate of E. coli by 50% when present at 0.72 wt%, indicating that it is less toxic than furfural, acetic acid and guaiacol. Sugars produced from switchgrass contained 4-fold less contaminants on a per-sugar basis than those from poplar and pine. All of the sugar streams contained too many inhibitors to be used at an industrially feasible concentration without additional detoxification. The poplar-derived pyrolytic sugar syrup was particularly inhibitory, possibly due to the high abundance of aromatic hydrocarbons, such as xylenes, and anisoles.



This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.


Do you already own this?



AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00