(102g) Engineered Autonomous Control of Metabolic Pathways

Prather, K. L. J., Massachusetts Institute of Technology
Microbial systems offer the opportunity to produce a wide variety of chemical compounds in a sustainable fashion. Economical production, however, requires processes that operate with high titer, productivity, and yield. One challenge towards maximizing yields is the need to use substrate for biomass, resulting in a competing pathway that cannot merely be eliminated. Productivities may also be significantly influenced by the timing of expression of genes in the production pathway. Dynamic metabolic engineering has emerged as a means to address these and other impediments in strain performance. Ideally, the triggers for dynamic control would be autonomous, that is, independent of any external intervention by the operator. We have developed such autonomous devices by utilizing both pathway-independent quorum-sensing circuits and pathway-dependent metabolite biosensors to control metabolic flux. In this talk, I will describe our approach for development of these Metabolite Valves and results to date from their implementation.