Computational Catalysis III: Electrocatalysis

Michalsky, R., ETH Zurich
Plaisance, C., Louisiana State University

Electronic structure theory has matured as a widely employed tool for predicting and characterizing properties of materials and enhancing mechanistic understanding of chemical reactions. Nevertheless, typically employed approaches, such as local or semi-local density functional theory, often fail for key systems of interest in catalysis. In particular, correlated electrons in transition-metal complexes are difficult to describe without careful consideration of correlation and localization (e.g. as reintroduced in DFT+U or in correlated wavefunction theory). Equally importantly, physisorption events are often dominated by non-covalent interactions that are not directly treated in standard semi-local DFT and instead necessitate reincorporation through nonlocal descriptions of correlation. This session solicits contributions that develop or utilize methods that aim to go beyond standard semi-local DFT.



Paper abstracts are public but to access Extended Abstracts, you must first purchase the conference proceedings.


Do you already own this?



AIChE Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $225.00