Concluding Remarks by Professor D. Ramkrishna

Biofilm-related infections are a class of notoriously difficult to treat healthcare-associated infections, which commonly develop on the surface of implanted medical devices. Despite lacking visual, auditory, and olfactory perception, bacteria detect and settle on surfaces, however, how the intrinsic properties of materials affect the initial adhesion microorganisms remains relatively unknown. By unveiling the structure-property relationships between polymer materials and microbial adhesion, we could guide the design of materials a priorito resist the adhesion of infection causing microorganisms, such as Staphylococcus aureus. In this presentation, I will discuss the effect that fundamental properties of polymer coatings (i.e., molecular architecture, stiffness, and thickness) have on the surface-associated transport of bacteria and on the adhesion of bacteria under quiescent conditions. By decoupling the effects of molecular architecture, stiffness, and thickness from coating chemistry, we have unlocked specific structure-property relationships that can be tailored to control the degree of bacterial adhesion and subsequently, reduce the formation of biofilms.