(65f) Enzymatically Powered Surface-Associated Self-Motile Protocells
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Materials Engineering and Sciences Division
Biomaterials and Life Science Engineering: Faculty Candidates
Monday, October 29, 2018 - 9:30am to 9:48am
In this study, we demonstrate the motility of an adherent particle by harnessing an asymmetric fluctuation of enzyme activity in a protocell. This type is more akin to eukaryotic cell motion, in which traction is mediated by adhesion and in which motility requires the breakage and formation of adherent contacts.[14] This work is different than seen with microswimmers in solution, because our vesicles do not have an inherent asymmetry and are adherent to a surface. We hypothesize that fluctuations in the force generation of enzymatic reactions on the surface of the protocell is sufficient to break adhesive contacts between polymer vesicles and the surface, and drive their autonomous motion, mimicking formation and breakage of adhesive contacts displayed by real mamalian cells. We incorporate the enzyme catalase into the lumen of biotinylated polymersomes that are adhesive to a solid surface that has been functionalized with a low density of avidin. Given that each turnover event in a typical enzyme reaction generates approiximately 10 pN of force[10, 15, 16] and the force to break an biotin-avidin bond is approximately 170 pN in an observation time of 3 millisecond,[17] a differential turnover of only @ 17 substrate molecules would be necessary to break a biotin-avidin contact and induce motion. Based on the large number of catalase molecules in the vesicle and its high turnover rate,[11] such a fluctuation seems achievable. We show that enzymatic reactions indeed induce motion similar to a random-walk and that the motility depends on the concentration of the substrate in the solution. Our results demonstrate that enzymatic reactions can be harnessed to generate motility of surface-adherent protocells, opening up numerous possibility for making motile protocells of different activity and specificity.
[1] W. S. Jang, S. C. Park, E. H. Reed, K. P. Dooley, S. F. Wheeler, D. Lee, D. A. Hammer, Soft Matter 2016, 12, 1014-1020.
[2] C. Martino, S. H. Kim, L. Horsfall, A. Abbaspourrad, S. J. Rosser, J. Cooper, D. A. Weitz, Angewandte Chemie-International Edition 2012, 51, 6416-6420.
[3] W. F. Paxton, C. C. Kistler, A. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, Journal of the American Chemical Society 2004, 126, 13424-13431.
[4] W. F. Paxton, A. Sen, T. E. Mallouk, Chemistry-a European Journal 2005, 11, 6462- 6470.
[5] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, A., Journal of the American Chemical Society 2006, 128, 14881-14888.
[6] N. Mano, A. Heller, Journal of the American Chemical Society 2005, 127, 11574- 11575. [7] T. C. Lee, M. Alarcon-Correa, C. Miksch, K. Hahn, J. G. Gibbs, P. Fischer, Nano Letters 2014, 14, 2407-2412.
[8] P. M. Wheat, N. A. Marine, J. L. Moran, J. D. Posner, Langmuir 2010, 26, 13052- 13055.
[9] K. K. Dey, X. Zhao, B. M. Tansi, W. J. Mendez-Ortiz, U. M. Cordova-Figueroa, R. Golestanian, A. Sen, A., Nano Letters 2015, 15, 8311-8315.
[10] H. S. Muddana, S. Sengupta, T.E. Mallouk, A. Sen, P. J. Butler, Journal of the American Chemical Society 2010, 132, 2110-2111.
[11] C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K. Tsekouras, S. Marqusee, S. Presse, C. Bustamante, C., Nature 2015, 517, 227-U288.
[12] D. A. Wilson, R. J. M. Nolte, J. C.M. van Hest, Nature Chemistry 2012, 4, 268-274.
[13] A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez, J. Gaitzsch, G. Fullstone, X. H. Tian, J. Azizi, J. Preston, G. Volpe, G. Battaglia, Science Advances 2017, 3.
[14] D. A. Lauffenburger, J. J. Linderman, Receptors: Models for binding, trafficking and signaling. Oxford Press: New York, 1993.
[15] P. J. Butler, K. K. Dey, A. Sen, Cellular and Molecular Bioengineering 2015, 8, 106-118
[16] S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E. Ibele, P. J. Butler, A. Sen, Journal of the American Chemical Society 2013, 135, 1406-1414.
[17] R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Nature 1999, 397, 50-53.