Certificates

We are aware of an issue with certificate availability and are working diligently with the vendor to resolve. The vendor has indicated that, while users are unable to directly access their certificates, results are still being stored. Certificates will be available once the issue is resolved. Thank you for your patience.

(543k) Low-Pressure Electrolytic Ammonia Synthesis Via High-Temperature Polymer-Based Proton Exchange Membrane

Authors: 
Aulich, T., University of North Dakota
The University of North Dakota Energy and Environmental Research Center (EERC) and North Dakota State University (NDSU) have developed a low-pressure electrolytic ammonia (LPEA) production process. The LPEA process uses an electrochemical cell based on an innovative polymer–inorganic composite (PIC) high-temperature (300°C) gas-impermeable proton-exchange membrane conceptualized and partially developed by EERC and NDSU. Because of its operability at ambient pressure and quick start-up capability (versus traditional high-pressure Haber Bosch-based plants), the LPEA process offers compatibility with smaller-scale plants and intermittent operation, and a cost-effective means of monetizing (and storing) renewable energy as ammonia. EERC, NDSU, and Proton OnSite are embarking on a project to optimize the PIC membrane, optimize and assess the technical and commercial viability of the LPEA process, and develop an LPEA process commercialization plan. To be presented will be information and data regarding 1) the configuration and working principles of the PIC membrane and LPEA process, 2) how the PIC membrane and LPEA process will be optimized, and 3) plans for LPEA process demonstration and commercialization.