We are aware of an issue with certificate availability and are working diligently with the vendor to resolve. The vendor has indicated that, while users are unable to directly access their certificates, results are still being stored. Certificates will be available once the issue is resolved. Thank you for your patience.

(543b) Identifying the Prospects of Electrochemical Ammonia Synthesis on Mxenes Using First Principles Calculations

Sethi, G., Carnegie Mellon University
Viswanathan, V., Carnegie Mellon University
Electrochemical synthesis of ammonia is a major challenge aimed at making production of ammonia sustainable. Currently ruthenium is the transition metal of choice for catalyzing the industrial Haber-Bosch process. However, electrochemical ammonia synthesis on ruthenium suffers from high overpotential and the competing hydrogen evolution reaction. Recently layered transition metals carbides and nitrides (MXenes) have been identified as a potential material class for ammonia synthesis. MXenes are particularly interesting owing to the high degree of tunability in surface chemistry due to the transition metal choice, interlayer distance, number of layers in the material, and surface termination. These choices affect the electron density of the surface and hence the binding strength of MXenes with key intermediates. In this work, we use density functional theory (DFT) to compute adsorption free energies of relevant intermediates to identify MXenes that are promising for ammonia synthesis. Using uncertainty quantification capabilities within the Bayesian error estimation functional (BEEF), we also compute the probability density functions for catalytic activity predictions. We obtain free energy diagrams and scaling relations and finally report prediction confidence values on the limiting potential and insights into the prospects of using MXenes for nitrogen fixation.