(478c) Development of 3D-Printed Polymer-Zeolite Composite Monoliths for Gas Separation

Authors: 
Thakkar, H., Missouri University of Science and Technology
Lawson, S., Missouri University of Science and Technology
Rownaghi, A., Missouri University of Science and Technology
Rezaei, F., Missouri University of Science and Technology
Organic-inorganic materials have emerged as promising candidates for use in various gas separation processes due to the beneficial synergistic effect of both constituents. Herein, we report a novel and facile approach for fabrication of composite monoliths consisting of Torlon polymer and 13X and 5A zeolites via 3D printing technique for the removal of CO2 from flue gas. The physical and structural properties of 3D-printed composite monoliths were systematically evaluated and compared with their pristine powders. By the incorporation of ~31 wt% zeolite particles into the polymer matrix and the addition of amine moieties into the polymer dope composite, the obtained monoliths displayed CO2 capture capacity proportional to the zeolite loading. Most importantly, both 3D-printed Torlon-zeolite monoliths exhibited high compressive strengths of approximately 210 MPa, which was significantly higher than that of 3D-printed zeolite monoliths developed in our previous work. These results demonstrate the superiority of polymer-zeolite composite monoliths, with existing undamaged zeolite crystals, formulated by 3D printing technique as robust structures with outstanding mechanical integrity and comparable adsorption capacity for various adsorption-based gas separation processes. The printing strategy reported herein can be easily extended to other organic-inorganic composite materials with different polymers and inorganic particles with various compositional ratios.