(419e) Breakage of Single Drops in an Inertial Laminar 2-D Orifice Flow
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Particulate and Multiphase Flows: Theory & Experiment
Tuesday, October 30, 2018 - 4:30pm to 4:45pm
The experimental apparatus consists of a parallel plate channel with a 25%-open slit orifice, creating a 2-D planar orifice flow in the center plane. Two oils were used as the continuous phase, resulting in Reynolds numbers ranging from 110 to 600. Water drops were injected upstream of the orifice using a variety of needles, generally resulting in droplet diameters between 200 and 1200 microns. The path and behavior of the drops were recorded using high speed digital imaging. Observations of the various modes of break-up will be presented. High fidelity CFD simulations were performed to acquire the velocity and deformation fields (in the absence of the drop) in the vicinity of the orifice.
To understand the conditions experienced by the drop prior to break-up, the experimental drop trajectories were combined with the flow field simulation to create a deformation history for each drop. By analyzing these results, the appropriate velocity, length, and time scales for laminar break-up were extracted. Based on these analyses, two new forms of local, trajectory-dependent Weber number are suggested. Each form includes recommended critical Weber number thresholds for break-up.