(417c) Stimuli-Responsive Thin Coatings Made from Natural Pectins
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Materials Engineering and Sciences Division
Nanostructured Polymers and Composites
Tuesday, October 30, 2018 - 4:00pm to 4:15pm
Thin films were fabricated by spin-casting solutions of natural pectin followed by cross-linking upon exposure to solutions of calcium chloride (CaCl2) in ethanol. Ethanol is a poor solvent for pectin thus did not disrupt the coating while allowing for Ca2+ ions to diffuse into the layers. Coatings were cross-linked over a range of CaCl2 concentrations to obtain networks at different extents of cross-linking.
ATR-FTIR assessed the chemical properties of pectin coatings and their modifications upon crosslinking. The pH- and thermal-responsive behaviors of networks were evaluated by characterizing the swelling behaviors using ellipsometry.
Our findings showed that the swelling capacity of the coatings was dependent on the degree of cross-linking. Moreover, the swelling of the natural coatings showed an active function of temperature. At temperatures below approximately 35 ËC the coatings were hydrophilic. As the temperature was increased, the pectin layers underwent a volume-phase transition, similar to a hydrophilic/hydrophobic shift found in lower critical solution temperature polymers. The ATR-FTIR revealed that the thermo-dependent change was driven by dehydration of the carbomethoxy groups along the backbone of the pectin chains.
The coatings of cross-linked pectin networks demonstrated a swelling behavior which could be tuned by adjusting temperature, degree of cross-linking, and pH of the surroundings to induce the desired response. Our findings provide an improved understanding of the chemical properties and the gelling behavior of thin films of pectins which can be employed for establishing responsive surfaces with tunable response suitable for the pharmaceutical and biotechnology industries.