(270f) Dynamic Modeling of a Continuous Reactive Crystallization Process
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Separations Division
Continuous Crystallization Processes
Tuesday, October 30, 2018 - 10:00am to 10:23am
Determining the impact of operating temperature on the particle size distribution could be challenging when higher temperature would advance the reaction rate (more solute generation/concentration), but may impact supersaturation ratio and crystal growth rate (more solubility at higher temperature). Beside temperature, the reagents concentration (flow-rate) would impact the reaction rate and generating solute molecule that would lower supersaturation. Effect of micromixing and local supersaturation is not studied in this project.
Most of the reactive crystallization processes have been in batch mode. The reactive crystallization can be used in continuous fashion for API synthesis. The continuous reactive crystallization in a MSMPR (CSTR) method has been less studied and published. In this work, a dynamic process simulation was developed for a continuous reactive crystallization, where the effect of temperature and concentrations (reagentsâ flow-rates) were studied on the system response and particle size distribution. The dynamic mode case studies cover a variation of CPPs disturbances and demonstrate system dynamic in terms of the particle size distribution and response rate in comparison to the RTD of the continuous reactive crystallizer.