(175h) Understanding the Orientational Behavior of Liquid Crystals on Metal Surfaces

Szilvási, T., University of Wisconsin-Madison
Yu, H., University of Wisconsin-Madison
Bao, N., University of Wisconsin-Madison
Abbott, N. L., University of Wisconsin-Madison
Mavrikakis, M., University of Wisconsin-Madison
Amplifying molecular events to the macroscopic scale defines one of the central scientific challenges because such processes can provide direct fundamental insights into nanoscopic events. Liquid crystals, which are fluid phases within which the molecules exhibit preferred orientation, are characterized by remarkable cooperative behaviors that allow information present at the level of sub-molecular interactions to be amplified into the optical scale (micrometer-scale)1 as the ordering of liquid crystals strongly depends on interfacial interactions.2-5

We will show in this presentation that building on the existing knowledge in surface science and heterogeneous catalysis of transition metal alloys, computational chemistry can predict the interaction of liquid crystal molecules and metal surfaces in an atomically precise manner. We present how this sensitive interaction can be used to visually detect chemical reactions occurring on the metal-liquid crystal interface that can also pave the way for future sensor applications.

  1. Shah, R. R.; Abbott, N. L., Science 2001, 293, 1296.
  2. Roling L. T.; Scaranto, J.; Herron, J. A.; Yu, H.; Choi, S.; Abbott, N. L.; Mavrikakis, M., Nature Communication, 2016, 7, 13338.
  3. Szilvási, T.; Roling, L. T.; Yu, H.; Rai, P.; Choi, S.; Twieg, R. J.; Mavrikakis, M.; Abbott, N. L., Chemistry of Materials, 2017, 29, 3563.
  4. Yu, H.; Szilvási, T.; Rai, P.; Choi, S.; Twieg, R. J.; Mavrikakis, M.; Abbott, N. L., Advanced Functional Materials, 2018, 28, 1703581.
  5. Szilvási, T.; Bao, N.; Yu, H.; Twieg, R. J.; Mavrikakis, M.; Abbott, N. L., Soft Matter, 2018, 14, 797.