(558f) Quantification of Parameter Space Regions Consistent with System Models and Associated Experimental Data
AIChE Annual Meeting
2017
2017 Annual Meeting
Computing and Systems Technology Division
Modeling and Computation in Energy and Environment
Wednesday, November 1, 2017 - 2:05pm to 2:24pm
It is with this in mind that we also present a method for determining parameters for a model from experimental data. These models are typically comprised of ordinary differential equations that cannot be analytically integrated. In such cases, local non-linear regression techniques are employed in the solution. There are however shortcomings in local non-linear regression. The first is that it fails to guarantee the global optimality of the solution. Additionally, it also fails to ascertain whether or not the proposed problem parameterization is appropriate for the available data. In this work, we have addressed these issues by proposing a novel method for parameter identification. This method will be applied to the already established LDF, and compared with the feasibility of the Two Step Model. This method is guaranteed to identify the global optimum of the non-linear regression problem. In addition, given a predetermined level of accuracy, it also has the ability to define a range of suitable values for each parameter.