(398bm) 3D Vertically-Aligned CNT/Graphene Hybrids from Layer-By-Layer Transfer for Supercapacitors | AIChE

(398bm) 3D Vertically-Aligned CNT/Graphene Hybrids from Layer-By-Layer Transfer for Supercapacitors

Authors 

Nagelli, E. - Presenter, United States Military Academy
Dai, P. L., Case Western Reserve University
3D Vertically-Aligned CNT/Graphene Hybrids from Layer-by-Layer Transfer for Supercapacitors

Dr. Enoch A. Nagelli1*, Dr. Liang Huang2, Dr. Feng Du2, and Prof. Liming Dai2

1Department of Chemistry & Life Science

United States Military Academy, West Point, New York 10996

2Center of Advanced Science and Engineering for Carbon (Case4Carbon)

Department of Chemical and Biomolecular Engineering

Department of Macromolecular Science and Engineering

Case Western Reserve University, Cleveland, OH

*Corresponding Author: Dr. Enoch Nagelli, Email: enoch.nagelli@usma.edu

Exceptional properties such as stable crystal structure, optical transparency, and superior electronic properties from high electron mobility make graphene a nanomaterial with promising applications.[1, 2] Among the many methods employed for producing graphene films, mechanical cleavage of HOPG[3] or exfoliation of graphite crystals,[4,5] chemical vapor deposition,[6] solvent thermal reaction,[7,8] and chemical routes via carbon nanotubes (CNTs), graphite intercalation compounds (GIC) or graphite oxide (GO) are the most widely recognized and used methods to produce single- and few-layer graphene.[9-12] Moreover, the oxidation and reduction of graphite is one of the most used methods for mass production of graphene for industrial applications. However, the reduction of graphene oxide results in a decrease in hydrophilicity, which in turn leads to greater aggregation and precipitation thus, losing its unique 2D characteristics.[13] Both chemical functionalization and electrostatic stabilization have been employed to reduce the agglomeration of graphene in order to utilize its unique properties.[14]

 Furthermore, there is a need to integrate graphene into 3D macroscopic architectures while maintaining its superior intrinsic properties. Graphene and carbon nanotubes have been combined to form transparent conductive films[15] and electrodes for rechargeable lithium ion secondary batteries.[16] Researchers recently designed a computational model of the novel 3D structure consisting of parallel graphene layers stabilized by vertically aligned CNTs (VA-CNTs) in between the graphene planes.[17]  However, experimental fabrication of the 3D graphene/VA-CNT hybrid structure via the transfer assembly process remains challenging. In addition, on the basis of our previous work[18] on the tunable 3D pillared VA-CNT/graphene architectures through intercalated growth of VA-CNTs into thermally expanded highly ordered pyrolytic graphite (HOPG) by the pyrolysis of iron phthalocyanine, we report a novel strategy to prepare 3D graphene/VA-CNT hybrid structures by a contact film transfer process, which utilizes attractive intermolecular-surface forces e.g., van der Waals of graphene and VA-CNTs. For the first time, we demonstrate a novel yet facile technique to develop three dimensional hybrid graphene/VA-CNT nanostructure via free-standing film transfer through the hydrophobic-hydrophobic interactions. As a result, supercapacitors based on the 3D graphene/VA-CNT hybrid formed via the transfer process were developed.

References

[1] A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183.

[2] A. K. Geim, Science, 2009, 324, 1530.

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666.

[4] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat. Nanotechnol., 2008, 3, 563.

[5] S. Park and R. S. Ruoff, Nat. Nanotechnol., 2009, 4, 217.

[6] J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, Carbon 2004, 42, 2867.

[7] Q. Kuang, S. Y. Xie, Z. Y. Jiang, X. H. Zhang, Z. X. Xie, R. B. Huang, L. S. Zheng, Carbon 2004, 42, 1737.

[8] Y. Zhou, Q. L. Bao, L. A. L. Tang, Y. L. Zhong, K. P. Loh, Chem. Mater. 2009, 21, 2950.

[9] Z. P. Zhu, D. S. Su, G. Weinberg, R. Schlogl, Nano Lett. 2004, 4, 2255.

[10] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, Y. S. Chen, J. Phys. Chem. C 2009, 113, 13103.

[11] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.

[12] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490.

[13] X. S. Du, Z. Z. Yu, A. Dasari, J. Ma, M. S. Mo, Y. Z. Meng, Y. W. Mai, Chem. Mater. 2008, 20, 2066.

[14] X. Y. Yang, X. Dou, A. Rouhanipour, L. J. Zhi, H. J. Rader, K. Mullen, J. Am. Chem. Soc. 2008, 130, 4216.

[15] V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang, Nano Lett. 2009, 9, 1949.

[16] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277.

[17] G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Nano Lett., 2008, 8, 3166.

[18] F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A. K. Roy, Chem. Mater. 2011, 23, 4810.