A Monte Carlo Model of Nanomaterial Toxicity
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Student Poster Sessions
Undergraduate Student Poster Session: Computing and Process Control
Monday, November 14, 2016 - 10:00am to 12:30pm
Ideally, density functional theory can provide the most accurate model of nanomaterial toxicity, but the computational expense of this modeling technique encourages us to simplify the simulation using molecular dynamics. We can accomplish this by using density functional theory to characterize the chemical interactions between the nanomaterials and the body but then using molecular dynamics to account for size and shape. The randomness of the interactions between the nanomaterials and the cell membranes will be best captured though a Monte Carlo model.
Through using a Monte Carlo model of hard-spheres we have been able to show that nanomaterials are less likely to aggregate near the membranes of kidney cells. The implications of this experiment will act as a guide for developing clinically applicable nanomaterials and be included in the overall toxicity model that will unleash the medical capabilities of nanotechnology.