(766e) Dissolution of Carbamazepine Crystallized Directly Onto Excipients
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Particle Engineering As Applied to Pharmaceutical Formulations II
Friday, November 18, 2016 - 9:46am to 10:05am
Dissolution of Carbamazepine Crystallized Directly onto
Excipients
Vivek Verma, Clare M Crowley, Peter Davern, Sarah Hudson & B. Kieran Hodnett
Synthesis and Solid
State Pharmaceutical Centre, Department of Chemical and Environmental Sciences,
Materials and Surface Science Institute,University of Limerick, Ireland
Email ID: vivek.verma@ul.ie
For BCS Class II drugs, such as carbamazepine (CBMZ),
in vivo bioavailability is
significantly affected by dissolution rate ADDIN EN.CITE
<EndNote><Cite><Author>Lindenberg</Author><Year>2004</Year><RecNum>339</RecNum><DisplayText>[1]</DisplayText><record><rec-number>339</rec-number><foreign-keys><key
app="EN"
db-id="zvp25de0dx0w06exsw9prrv5rvvszxv5zr2x">339</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Lindenberg,
Marc</author><author>Kopp,
Sabine</author><author>Dressman, Jennifer
B.</author></authors></contributors><titles><title>Classification
of orally administered drugs on the World Health Organization Model list of
Essential Medicines according to the biopharmaceutics classification
system</title><secondary-title>European Journal of Pharmaceutics
and Biopharmaceutics</secondary-title></titles><periodical><full-title>European
Journal of Pharmaceutics and
Biopharmaceutics</full-title></periodical><pages>265-278</pages><volume>58</volume><number>2</number><keywords><keyword>Biopharmaceutical
classification system</keyword><keyword>Permeability</keyword><keyword>Solubility</keyword><keyword>Absorption</keyword><keyword>World
Health Organization</keyword><keyword>Essential
Medicines</keyword></keywords><dates><year>2004</year><pub-dates><date>9//</date></pub-dates></dates><isbn>0939-6411</isbn><urls><related-urls><url>http://www.sciencedirect.com/science/article/pii/S0939641104000438</url>...1]. Conventional approaches to improving dissolution
rates have relied on mechanical particle size reduction techniques (e.g., attrition, impact or shearing) but
these approaches can lead to degradation of active pharmaceutical ingredients (APIs),
non-uniform crystal size distributions and the incorporation of impurities ADDIN EN.CITE
<EndNote><Cite><Author>Horn</Author><Year>2001</Year><RecNum>329</RecNum><DisplayText>[2]</DisplayText><record><rec-number>329</rec-number><foreign-keys><key
app="EN"
db-id="zvp25de0dx0w06exsw9prrv5rvvszxv5zr2x">329</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Horn,
Dieter</author><author>Rieger,
Jens</author></authors></contributors><titles><title>Organic
Nanoparticles in the Aqueous PhaseTheory, Experiment, and
Use</title><secondary-title>Angewandte Chemie International
Edition</secondary-title></titles><periodical><full-title>Angewandte
Chemie International Edition</full-title></periodical><pages>4330-4361</pages><volume>40</volume><number>23</number><keywords><keyword>carotenoids</keyword><keyword>disperse
systems</keyword><keyword>nanoparticles</keyword><keyword>nanostructures</keyword><keyword>phase
transformations</keyword></keywords><dates><year>2001</year></dates><publisher>WILEY-VCH
Verlag
GmbH</publisher><isbn>1521-3773</isbn><urls><related-urls><url>http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W</url><url>http://onlinelibrary.wiley.com/store/10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W/asset/4330_ftp.pdf?v=1&t=ilm44kjl&s=bf5c1a75e7a80f8be75b3afa39f65a1725d7371f</url></related-urls></urls><electronic-resource-num>10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W</electronic-resource-num></record></Cite></EndNote>[2]. To overcome these problems the pharmaceutical
industry is currently focussing on a variety of bottom-up approaches (e.g., spray drying, antisolvent
precipitation, sonoprecipitation, etc.) to reduce the crystal size
distributions ADDIN EN.CITE
<EndNote><Cite><Author>Poornachary</Author><Year>2016</Year><RecNum>313</RecNum><DisplayText>[3]</DisplayText><record><rec-number>313</rec-number><foreign-keys><key
app="EN"
db-id="zvp25de0dx0w06exsw9prrv5rvvszxv5zr2x">313</key></foreign-keys><ref-type
name="Journal
Article">17</ref-type><contributors><authors><author>Poornachary,
Sendhil K.</author><author>Han,
Guangjun</author><author>Kwek, Jin Wang</author><author>Chow,
Pui Shan</author><author>Tan, Reginald B.
H.</author></authors></contributors><titles><title>Crystallizing
Micronized Particles of a Poorly Water-Soluble Active Pharmaceutical
Ingredient: Nucleation Enhancement by Polymeric Additives</title><secondary-title>Crystal
Growth &
Design</secondary-title></titles><periodical><full-title>Crystal
Growth &
Design</full-title></periodical><pages>749-758</pages><volume>16</volume><number>2</number><dates><year>2016</year><pub-dates><date>2016/02/03</date></pub-dates></dates><publisher>American
Chemical
Society</publisher><isbn>1528-7483</isbn><urls><related-urls><url>http://dx.doi.org/10.1021/acs.cgd.5b01343</url><url>http://pubs.acs.org/...3].
In
this study, the influence of dispersed excipient particles present during the batch
crystallisation of metastable carbamazepine-methanol solutions has been examined.
The rationale of this approach is that primary heterogeneous nucleation
frequently reduces the free energy barrier to nucleation enabling nucleation to
occur at lower supersaturations; increasing nucleation rates tends to reduces
crystal size, potentially obviating the need to mill API batches.
CBMZ, a well known anti-epilectic
drug and used in the treatment of neuralgia, was selected as the model API. Cooling
crystallisations of CBMZ at supersaturations (S) of 1.22, 1.34 and 1.55, in the
presence of dispersed excipient particles (α/β-Lactose
(α/β-Lac), β-D-Mannitol (β-D-Man), microcrystalline
cellulose (MCC) and carboxymethyl cellulose (CMC)), results in the production
of CBMZ FIII crystals. The presence of CBMZ FIII crystals was confirmed by PXRD
and in situ SEM-Raman. Crystal size
distribution (CSD) (Table 1) from SEM micrographs indicated a variation in CBMZ
FIII crystal size of 5 50 μm (Figure 1). Interfacial interactions
between the CBMZ FIII crystals and excipients particles was confirmed by in situ SEM-Raman. Dissolution rate of
CBMZ FIII from the powder mixtures was enhanced with 70 82 % dissolution
occurring within 15 mins compared with 42 % for CBMZ recrystallised in the
absence of excipients under the same conditions (Figure 2).
Figure 2: % - Dissolution of CBMZ FIII crystallised in presence of excipients in PBS at pH = 7.4; sink conditions (40 mg/L); 3 hr aged samples; S = 1.22
|
Table 1: Crystal size distribution (CSD) (D50 in μm) of CBMZ FIII crystals in presence and absence of excipients
|
Figure 1: CBMZ FIII CSD crystallised in presence of excipients along with their respective SEM micrographs; 3 hr aged samples; S = 1.22
|
Acknowledgements
This work was
funded by Science Foundation
Ireland under Grant 12/RC/2275.
References
ADDIN EN.REFLIST 1. Lindenberg,
M., S. Kopp, and J.B. Dressman, European Journal of Pharmaceutics and
Biopharmaceutics, 2004. 58(2): p.
265-278.
2. Horn, D. and J. Rieger, Angewandte
Chemie International Edition, 2001. 40(23):
p. 4330-4361.
3. Poornachary, S.K., et al., Crystal
Growth & Design, 2016. 16(2): p.
749-758.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
2016 AIChE Annual Meeting
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |
Pharmaceutical Discovery, Development and Manufacturing Forum only
AIChE Pro Members | $100.00 |
Food, Pharmaceutical & Bioengineering Division Members | Free |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $150.00 |
Non-Members | $150.00 |