(476b) Process Integration for Simulated Moving Bed Reactor for Production of Glycol Ether Acetate
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Separations Division
Hybrid Separation Processes
Wednesday, November 16, 2016 - 8:55am to 9:20am
This work identifies the optimal SMBR operating parameters for its integration within an overall process. The dynamic mathematical model developed in our previous work is employed in a process flowsheet in this work. The SMBR model was developed for an industrial case study for the continuous production of a solvent, propylene glycol methyl ether acetate (DOWANOLTM PMA1) through an acid-catalyzed esterification reaction of 1-methoxy-2-propanol and acetic acid. This overall process consists of the SMBR unit and two downstream units. Specifically, the extract and raffinate streams from the SMBR are further processed to improve product purity, and recycle streams leaving the downstream units return to the SMBR unit to reduce solvent consumption and waste generation.
The proposed process flowsheet is optimized in a deterministic, nonlinear dynamic optimization scheme. The overall operation is formulated as multiple objective optimization problem. The objective functions are to minimize the operating cost of the overall process indirectly through constraints on process variables and to maximize the PMA productivity. The results from this work are compared to those of an isolated SMBR unit, allowing for a detailed comparison between the SMBR operation in the overall process to that of an isolated unit. The work presented offers a more realistic and holistic overall process understanding that is representative of industrial SMBR operations.
1. Trademark of The Dow Chemical Company ('Dow') or an affiliated company of Dow.