(300d) Multi-Scale (Pellet-Reactor Scale) Membrane Reactor Modeling and Simulation: High Temperature and High Pressure Water-Gas Shift Reaction
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Separations Division
Membrane Reactors
Tuesday, November 15, 2016 - 9:30am to 9:50am
The MR system is composed of a reaction zone packed with catalyst pellets, and a permeation zone, where the reaction products permeate. For the reaction zone (classic packed bed reactor), after completing a single-pellet isothermal/non-isothermal steady-state, stand-alone simulations, we couple our model with an isothermal/non-isothermal steady-state packed-bed reactor model to form a hybrid multi-scale reactor model. The catalyst pellet simulation is repeatedly carried out along the reactor bed length (yielding the effectiveness factor along the reactor length for the locally prevailing reaction conditions), and is coupled with a 1-D (axial) reactor model that captures species transport/reaction along the reactor length. Finally, classic packed bed reactor is coupled with a permeation zone to create full membrane reactor (MR) system.
The velocity and speciesâ?? concentration profiles along the reactor length are captured by momentum/species transport models accounting for convection/reaction /diffusion mechanisms. In the derivation of the modelâ??s equations, the Reynolds Transport Theorem was applied separately to each of the domains; the pelletâ??s domain, the reactorâ??s domain and the permeationâ??s domain. The rigorous Maxwell Stefan and dusty gas models are applied to describe mass diffusion fluxes. The effectiveness factors are calculated along the membrane reactor. Finally, performances of the classic packed bed reactor and the membrane reactor are compared.