(256u) MIL-100(Fe) Synthesis and Characterization for Topical Treatment of Skin Diseases

Authors: 
Sirkecioglu, A., Istanbul Technical University
Atalay-Oral, C., Istanbul Technical University
Aliari Miavaghi, M., Istanbul Technical University
Metal organic frameworks or MOFs are the latest class of porous materials witch are indeed very important solids because of their potential applications in gas storage, adsorption, separation, or catalysis. Among the tens of thousands of known MOFs, the MIL family built from trivalent metal centers and carboxylate bridging ligands has particularly attracted a great deal of attention due to their enhanced stability, enormous porosity, and very large pores. These porous inorganic-organic materials are potentially efficient to use as drug carriers in drug delivery systems. In the domain of health, there are important challenges to delivery of drugs in the body using non-toxic and biologically friendly nanocarriers. The synthesis of porous hybrid materials via hydrothermal or solvothermal methods requires several days for material crystallization, Since shorter reaction times are more attractive for industrial-scale production, syntheses using microwave irradiation can be a viable option. In this study non-toxic iron(III) carboxylate (MIL-100(Fe)) were synthesized by using microwave irradiation method via the reaction of ferric nitrate and trimesic acid (H3BTC) under HF-free conditions. The optimization of yield, crystallinity, and particle size was achieved through the control of synthetic parameters such as temperature, heating rate, and dwelling time. The â?¼400 nm particles were characterized using a variety of methods, including SEM, XRD, nitrogen adsorption measurements, TGA and particle size analyzer. Results show that the prepared samples have high crystallinity (>80%), high surface area (SBET=1255 m2/g), large pores, and the ability to incorporate functional groups into the framework.
Topics: