(235e) Inhibition Effect during Catalyzed Biomass Char Gasification in Steam and Carbon Dioxide and Its Reversal
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Sustainable Engineering Forum
Reaction Kinetics and Transport Fundamentals for Biomass Conversion: Chemical and Catalytic
Monday, November 14, 2016 - 4:55pm to 5:20pm
This study focused on understanding the mechanism in the evolution of gasification reactivity during conversion of char with CO2, steam, and their mixtures. Bagasse char as starting material was prepared by pyrolysis of potassium-rich Brazilian bagasse in an inert gas pressurized entrained flow reactor. The char was then exposed to varying gasifying environments in a thermogravimetric analyzer to undergo full conversion. The initial gasification reactivity was higher in steam than in CO2. However, overall and final reactivities were higher in CO2 than in steam. Gasification inhibition was observed as a continuously decreasing reactivity with conversion with steam that was not observed with CO2. On the other hand, CO2 gasification rate showed a continuous increase with char conversion. The underlying mechanism was explored further by studying the transient behavior under exposure to step changes in model gas compositions of CO2, steam, H2, and O2. It is found that the active sites for both CO2 and steam gasification are initially the same. However, as the char gasification progresses in steam, the active sites are likely to be blocked by in-situ hydrogen product formation (â??inhibitionâ?), which does not happen during CO2 gasification. On the contrary, concentration of active sites is increased as the char gasification progresses in CO2 due to the increasing K/C ratio. In this study, several methods were demonstrated for the reversal of the inhibition effect. A generalized mechanism, consistent with experimental observations, is proposed. The findings provide a key insight into the source of the elusive synergistic effect during gasification with steam and CO2.