(230b) Hierarchical Emulsion Networks from Endoskeletal Droplets
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Poster Session: Fluid Mechanics (Area 1J)
Monday, November 14, 2016 - 3:15pm to 5:45pm
Producing emulsion droplets that resist coarsening requires a structural scaffold to be introduced to counteract surface tension. In endoskeletal droplets, the scaffold consists of an internal network of intercalated wax crystallites with a yield stress strong enough to resist the driving force for droplet collapse. As a result, the droplets can be molded into anisotropic shapes. However, the internal elasticity is not insurmountable; multiple droplets can partially coalesce with others, forming larger suprastructures that retain the shapes of the component droplets. Many droplets can be coalesced into linear secondary structures akin to polymer chains, which can then assemble tertiary folded structures similar to electrospun fiber networks, resulting in hierarchical assemblies of bicontinuous fluids that preserve a continuous, anisotropic liquid interface. The size scales of these networks can be tuned during formation or once formed by applying external fields or tuning coalescence between droplets, allowing diverse networks to be formed. We present a microfluidic method for producing droplet suprastructures continuously and demonstrate control of three-dimensional structures during and after production.