(92e) Fabrication of High-Quality Graphene Oxide Nanoscrolls and Application in Supercapacitor

Authors: 
Fan, T., Peking University
Zeng, W., Nanjing University of Posts and Telecommunications
Niu, Q., Nanjing University of Posts and Telecommunications
Tong, S., Nanjing University of Posts and Telecommunications
Cai, K., Nanjing University of Posts and Telecommunications
Liu, Y., Peking University Shenzhen Graduate School
Huang, W., Nanjing University of Posts and Telecommunications
Min, Y. G., Nanjing University of Posts and Telecommunications
Epstein, A. J., The Ohio State University

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.