(263a) Investigation of Titanium and Cerium MOFs for Improved Acid Gas Separation | AIChE

(263a) Investigation of Titanium and Cerium MOFs for Improved Acid Gas Separation


Mounfield, W. P. III - Presenter, Georgia Institute of Technology
Walton, K. S. - Presenter, Georgia Institute of Technology

Developing sorbents for the adsorption of toxic chemicals has garnered much research attention in the field of porous materials. Impregnated activated carbons1-3 have been widely explored for acid gas separation applications; however, metal-organic frameworks (MOFs) have emerged as a promising class of materials for acid gas separations. MOFs are characterized by metal clusters and organic linkers, large surface areas, and tunable chemical properties that make them excellent candidates for gas adsorption.4-8 Several MOFs using titanium for the metal source have shown promising adsorption properties for CO2, water, and H2S.9, 10 In an effort to determine the adsorption and separation performance of these materials, dynamic breakthrough studies with a wide range of acid gases were performed on titanium and cerium MOFs. In addition, recent work has identified MOFs as excellent templates for producing MOF-derived structured metal oxides.11-13The dynamic performance of these oxides was examined in comparison with the parent MOFs as well as bulk commercial oxides to determine advantages of using structured material derivatives. In addition to dynamic breakthrough performance, the effect of acid gas exposure was also explored through water exposure experiments, as well as structure analysis before and after breakthrough measurements.

(1) Smith, J. W. H.; Westreich, P.; Croll, L. M.; Reynolds, J. H.; Dahn, J. R. J. Colloid Interface Sci. 2009, 337, 313.

(2) Petit, C.; Karwacki, C.; Peterson, G.; Bandosz, T. J. The Journal of Physical Chemistry C 2007, 111, 12705.

(3) Mahle, J. J.; Peterson, G. W.; Schindler, B. J.; Smith, P. B.; Rossin, J. A.; Wagner, G. W. J. Phys. Chem. C 2010, 114, 20083.

(4) Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.

(5) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

(6) Keskin, S.; van Heest, T. M.; Sholl, D. S. ChemSusChem 2010, 3, 879.

(7) Yilmaz, B.; Trukhan, N.; Müller, U. Chinese Journal of Catalysis 2012, 33, 3.

(8) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Chem. Rev. 2012, 112, 724.

(9) Im, J. H.; Ko, N.; Yang, S. J.; Park, H. J.; Kim, J.; Park, C. R. New J. Chem. 2014, 38, 2752.

(10) Vaesen, S.; Guillerm, V.; Yang, Q.; Wiersum, A. D.; Marszalek, B.; Gil, B.; Vimont, A.; Daturi, M.; Devic, T.; Llewellyn, P. L.; Serre, C.; Maurin, G.; De Weireld, G. Chem Commun (Camb) 2013, 49, 10082.

(11) Liu, D. D.; Dai, F. N.; Li, X. H.; Liang, J. L.; Liu, Y. Q.; Liu, C. G. Rsc Advances 2015, 5, 15182.

(12) Im, J. H.; Kang, E.; Yang, S. J.; Park, H. J.; Kim, J.; Park, C. R. Bull. Korean Chem. Soc. 2014, 35, 2477.

(13) Wang, Z.; Li, X.; Xu, H.; Yang, Y.; Cui, Y.; Pan, H.; Wang, Z.; Chen, B.; Qian, G. Journal of Materials Chemistry A 2014, 2, 12571.