(320d) First Principles Modeling of Surface Plasmon Dynamics and Mechanism for Photo-Catalytic Rate Enhancement

Morabito, M., University of Michigan
Xin, H., Stanford University
Linic, S., University of Michigan

We have recently reported that optically excited plasmonic nano-particles can activate photo-chemical transformations.[1,2] These reactions exhibit a number of unique characteristics fundamentally different than other photo-catalysts and catalytic reactions.  In this contribution we have used quantum chemical approaches to model the plasmon-driven photo-chemical reactions on metals.[3–6] I will discuss the time-dependent evolution of the electronic structure of optically excited plasmonic metals. Furthermore, I will show how this electronic structure interacts with adsorbates, ultimately driving chemical transformations of the adsorbates. A number of conflicting mechanisms will be discussed and analyzed in the context of previously reported experimental results. 


[1]      P. Christopher, H. Xin, A. Marimuthu, S. Linic, Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures., Nat. Mater. 11 (2012) 1044–50.

[2]      S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy., Nat. Mater. 10 (2011) 911–21.

[3]      L. Genzel, T.P. Martin, U. Kreibig, Dielectric function and plasma resonances of small metal particles, Zeitschrift Für Phys. B Condens. Matter Quanta. 21 (1975) 339–346.

[4]      S. Monturet, P. Saalfrank, Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au(111), Phys. Rev. B. 82 (2010) 075404.

[5]      V. Krishna, J.C. Tully, Vibrational lifetimes of molecular adsorbates on metal surfaces., J. Chem. Phys. 125 (2006) 054706.

[6]      T. Olsen, J. Schiotz, Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons., J. Chem. Phys. 133 (2010) 034115.

[7]      S.I. Anisimov, B. Rethfeld, Theory of ultrashort laser pulse interaction with a metal, in: V.I. Konov, M.N. Libenson (Eds.), Nonreson. Laser-Matter Interact., International Society for Optics and Photonics, 1997: pp. 192–203.

[8]      Z. Lin, L. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B. 77 (2008) 075133.