(727b) Thermal Evaluation of Chemical Looping Process for Hydrogen Production Using Bivalent Metal Added Iron Oxide As An Oxygen Carrier
AIChE Annual Meeting
2013
2013 AIChE Annual Meeting
Topical Conference: Innovations of Green Process Engineering for Sustainable Energy and Environment
Chemical Looping Processes III
Thursday, November 7, 2013 - 3:36pm to 3:58pm
The chemical looping process for hydrogen production co-generates hydrogen and electricity with simultaneous capture of carbon dioxide. This process is composed of interconnected three reactors: a fuel reactor where an oxygen carrier is reduced by fuel, a steam reactor where hydrogen is produced by water splitting, and air reactor where air is combusted. The iron oxide is used as a suitable oxygen carrier from thermodynamic and chemical equilibrium point of view. The many studies were conducted to improve the reactivity of the iron oxide such as preparation methods, sintering temperatures, supporters, etc. In addition, the mixing the bivalent metal (M = Cu, Ni, Mo) to the iron oxide has been studied to enhance the reactivity of the redox reaction. In this study, the bivalent-added iron oxides showed the kinetic improvement, higher steam conversion to hydrogen, and the lower carbon deposition. The chemical looping process was simulated and the thermal evaluation was conducted based on the experimental data, varying the oxygen carriers. The several cases were compared varying the temperatures and the extent of solid conversion in the fuel and steam reactors.