(296f) Molecular Dynamics Simulation of the Interfacial Shear Strength of a 3-Layer Graphene Nanoplatelet-Vinyl Ester Resin Matrix
AIChE Annual Meeting
2013
2013 AIChE Annual Meeting
Materials Engineering and Sciences Division
Composite Interfaces
Tuesday, November 5, 2013 - 2:00pm to 2:18pm
Molecular dynamics (MD) simulations were used to study the interfacial adhesion between a three layer thick graphite nanoplatelet and a vinyl ester (VE) matrix. Interfacial bonding and carbon/matrix load transfer are influenced by formation of a polymer interphase near the carbon surfaces. A VE resin was equilibrated near the graphite surfaces and then cured using the Relative Reactivity Volume algorithm to form a crosslinked matrix while enforcing the correct regiochemistry and relative reactivity ratios within the free radical addition cure. More chemically realistic predictions of the interfacial surface adhesion are possible with this computational methodology.