We are aware of an issue with certificate availability and are working diligently with the vendor to resolve. The vendor has indicated that, while users are unable to directly access their certificates, results are still being stored. Certificates will be available once the issue is resolved. Thank you for your patience.

(591f) Electrostatic Assemblies of Virus-Templated Titania Nanowires for Dye-Sensitized Solar Cells

Hammond, P. T., Massachusetts Institute of Technology

Layer-by-layer assembly allows for the incorporation of a wide range of functional materials into structured thin films based on the alternate adsorption of cationic and anionic species.  Biomolecules, and in particular viruses, show great potential as components of functional materials due to their capacity for molecular recognition and self assembly. Here we report that by substituting a negatively charged variant of M13 bacteriophage for the negatively charged polymer during the assembly process, M13 phage can be incorporated into the film, resulting in a hybrid material with characteristics of both its biological and polymeric components.  The resulting mesoporous polymer films can be used as a template for the construction of dye sensitized solar cells (DSSCs) with a novel nanowire architecture to enhance electron transport within the photoanode.  The effect of the biotemplated nanowires on device performance has been analyzed using impedance spectroscopy techniques.  Design, water-based assembly methods, and materials characterization of these systems will be discussed, as well as device characterization methods.