(357d) Molecular Dynamics Simulations of Ionic Aggregates in a Coarse-Grained Ionomer Melt | AIChE

(357d) Molecular Dynamics Simulations of Ionic Aggregates in a Coarse-Grained Ionomer Melt

Authors 

Hall, L. M. - Presenter, Sandia National Laboratories
Stevens, M. J. - Presenter, Sandia National Laboratories
Frischknecht, A. - Presenter, Sandia National Laboratories


Ionomers--polymers containing a small fraction of covalently bound ionic groups--have potential application as solid electrolytes in batteries. Understanding ion transport in ionomers is essential for such applications. Due to strong electrostatic interactions in these materials, the ions form aggregates, tending to slow counterion diffusion. A key question is how ionomer properties affect ionic aggregation and counterion dynamics on a molecular level. Recent experimental advances have allowed synthesis and extensive characterization of ionomers with a precise, constant spacing of charged groups, making them ideal for controlled measurement and more direct comparison with molecular simulation.

We have used coarse-grained molecular dynamics to simulate such ionomers with regularly spaced charged beads. The charged beads are placed either in the polymer backbone or as pendants on the backbone. The polymers, along with the counterions, are simulated at melt densities. The ionic aggregate structure was determined as a function of the dielectric constant, spacing of the charged beads on the polymer, and the sizes of the charged beads and counterions. The pendant ion architecture can yield qualitatively different aggregate structures from those of the linear polymers. For small pendant ions, roughly spherical aggregates have been found above the glass transition temperature. The implications of these aggregates for ion diffusion will be discussed.

*Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.