(180x) Molecular Modeling of High-Energy Materials | AIChE

(180x) Molecular Modeling of High-Energy Materials

Authors 

Sokkalingam, N. - Presenter, Department of Chemical Engineering
Potoff, J. J. - Presenter, Wayne State University


In this work force fields (molecular models) have been developed for six energetic compounds, 2,4-dinitroanisole (DNAN), N-methyl-p-nitroaniline (MNA), dinitropyrazole (DNP), nitrotriazolone (NTO), methyl-trinitroimidazole (MTNI) and TATB (trinitrotriaminobenzene) categorized by the army as potential insensitive munitions (IM) compounds. IM compounds exhibit low shock sensitivity and high thermal stability over traditional explosive compounds, such as TNT. The force fields are used to predict pharmacokinetic properties such as octanol-water partition coefficients and Henry's law constants along with other thermophysical properties such as vapor-liquid equilibria, vapor pressure, critical parameters and normal boiling points. The validation of the developed force fields is accomplished with the scarce experimental data available. The octanol-water partition coefficients and Henry's law constant predicted for DNAN and MNA are in good agreement with the experiment. For DNP, NTO, MTNI and TATB, materials for which limited experimental data are available, the predicted partition coefficients agree well with values calculated with group contribution methods.