(466d) Polymorph Selection During The Crystallization Of Charge-Stabilized Colloidal Suspensions

Desgranges, C., University of North Dakota
Delhommelle, J., University of South Carolina

Using molecular dynamics simulations, we study the crystallization of supercooled liquids of charge-stabilized colloidal suspensions, modeled by the Yukawa (screened-Coulomb) potential [1,2]. By modifying the value of the screening parameter, we are able to invert the stability of the body-centered cubic (bcc) and face-centered cubic (fcc) polymorphs and study the crystal nucleation and growth in the domain of stability of each polymorph. We show that the crystallization mechanism strongly depends on the value of the screening length. When bcc is the stable polymorph, the crystallization mechanism is straightforward. Both kinetics and thermodynamics favor the formation of the bcc particles and polymorph selection takes place early during the nucleation step. When fcc is the stable polymorph, the molecular mechanism is much more complex. First, kinetics favor the formation of bcc particles during the nucleation step. The growth of the post-critical nucleus proceeds through the successive cross-nucleation of the the stable fcc polymorph on the metastable hcp polymorph as well as of the hcp polymorph on the fcc polymorph. As a result, polymorph selection occurs much later, i.e. during the growth step. We then extend our findings established in the case of homogeneous crystal nucleation to a situation of practical interest, i.e. when a seed of the stable polymorph is used. We demonstrate that the growth from the (111) face of a perfect fcc crystal into the melt proceeds through the same mechanisms.

[1] C. Desgranges and J. Delhommelle, J. Am. Chem. Soc. 128, 15104 (2006).

[2] C. Desgranges and J. Delhommelle, J. Chem. Phys. 126, 054501 (2007).