Limited Time Offer

Claim a 25% discount on all eLearning courses (including credentials) with code ELEARN25.

Offer is valid from March 10-31. Public courses excluded from promo. 

(217e) Synthesis of Novel 3DOM-Prevoskites Redox System for CO2 based Oxidative Ethane Dehydrogenation with Integrated Carbon Capture

Hu, J. - Presenter, West Virginia University
Balyan, S., Indian Institute of Technology
Li, F., North Carolina State University
Liu, J., North Carolina State University
Vogt-Lowell, K., North Carolina State University
Chacko, D., North Carolina State University
With growth in global energy demand and reliance on fossil fuels for energy, CO2 emissions is projected to be at higher level in the future. To address this challenge, a viable CO2 capture, storage and utilization technology is the need of the hour. Conventional technologies to convert highly stable CO2 molecule generated form fossil fuel combustion into value added product requires addition of significant external energy to overcome low CO2 conversion kinetics/thermodynamics. To lower the threshold of these hurdles, a two-step molten salt mediated oxidative dehydrogenation (MM-ODH, (Step 1-4)) approach which, addresses the key challenges for feasible CO2 utilization is studied over the core-shell redox catalyst. The redox catalyst is composed of molten carbonate (Li2CO3) covering the solid perovskites substrate.

CO2 capture step

CO2 (in flue gas) + X2O (alkali metal oxides in molten salt) → X2CO3 (1)

MeOx-1 + ½ O2 (in flue gas) → MeOx (mixed oxide particles) (2)

CO2 assisted ODH step

R-CH2-CH3 + X2CO3 → R-CH=CH2 +CO+H2O +X2O (3)

R-CH2-CH3 +MeOx → R-CH=CH2 +H2O + MeO x-1 (4)

In CO2 capture step, alkali metal oxide salt captures CO2, and reduced mixed oxide particles reacts with O2 to oxidize it to MeOx. In ODH step, oxidized carbonate and mixed oxide particles reacts with alkane to produce lower olefins, CO and H2O.

Use of commercial perovskites as substrate are limited by low surface area and pore volume. In the present study, an effort is made is to develop a 3-dimensional ordered macro-porous (3DOM) perovskite La0.8 Sr0.2 FeO3(LSFO) for oxidative dehydrogenation (ODH). This strategy was proposed based on the following hypotheses: 1) the porous structure can provide large surface area and pore volume to accommodate the carbonate salt; and 2) ordered porous structure is expected to improve the overall efficiency of the reaction system by enhancing mass transport through creating controllable pathways for reactants and products. To determine the CO2 capture performance of synthesized redox catalyst, Thermogravimetric analysis (TGA) was conducted on LSF substrate without and with molten carbonates (Figure 1). In reduction step, H2 gas is flown through the catalyst for 5 minutes. Reduction and oxidation strep are separated by 20 minute purging using inert gas. TGA indicates a 0.37 wt.% and 1.15 wt.% increase in catalyst weight during the CO2 injection for without and with carbonate covered LSF substrate respectively. These results are in line with our approach, which stated that using a two-step MM-ODH catalyst CO2 can be captured and valorize to value added products on a single catalyst.

As-synthesized catalyst were assessed for Ethane ODH at 750 °C. 0.5 g of catalyst (0, 20, 30, 60, 80 and 100 wt.% Li2CO3@LSF) was packed tubular reactor followed by quartz wool on either side. Mass flow controller (MFCs) modulates the flow rates of inert (10 ml/min) and reactant gases. Valve A and B opens during the reduction (5 ml/min) and oxidation (5 ml/min) steps, respectively. Valve C for inert gas flow remains during 5-minute purge that follows both reduction and oxidation steps and during reduction and oxidation step, respectively. Figure 2 shows ethane conversion and CO2 capture over different corresponding to 5th cycle of C2H6:CO2 injection protocol. A constant ethane conversion of 65% is observed for the as-synthesized catalyst. An increase in CO2 capture is observed when the molten salt weight percentage is increased for 20 wt.% Li2CO3@LSF (32 % CO2 capture) to 80 wt.% Li2CO3@LSF (50 % CO2 capture) which can assert that molten salt still has property to capture the CO2 after 5th consecutive cycle.