(85a) Batch-to-Continuous Transition in the Specialty Chemicals Industry: A Case Study for Intensification of Dispersants Production
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Topical Conference: Next-Gen Manufacturing
Process Intensification and Modular Manufacturing: Chemical Commodity Processes
Monday, November 16, 2020 - 8:00am to 8:15am
However, several key factors hamper adoption of this technology. Among those are: (i) The deep historic roots of this industry in batch processing with decades of industrial experience make a transition to âunprovenâ process technology risky in an overall risk-averse industry. A first-of-its-kind demonstration of such a transition by an industry leader could have a transformative impact on this industry. (ii) While batch reactors are highly tolerant to incomplete knowledge (in particular regarding kinetics), the design and operation of continuous processes requires availability of robust kinetics. However, the detailed chemistry and kinetics underlying current processes are often poorly understood (if not completely unknown). Transition to continuous processing hence requires collection of robust and accurate kinetics as a key prerequisite, including impact of impurities and contaminants which play a significant role in many specialty chemicals processes.
In this presentation, we will present the application of process intensification via batch-to-continuous transition for dispersant production, a large class of specialty chemicals that constitute a ~$20B global market and are well-suited for demonstration of PI principles due to their relatively simple chemistry and broad range of production volumes. The (on-going) project is a close collaboration between the University of Pittsburgh and Lubrizol Corporation , a global leader in dispersant technology, and aims to develop a methodology for the batch-to-continuous transition for the specialty chemicals industry and demonstrate the drastic advances in efficiency that are attainable during that transition. This collaboration was able to move a first continuous process for dispersant production within ~2 years from initial laboratory studies to deployment of a first fully operational commercial skid. We will highlight new insights into the reaction mechanisms and kinetics for the underlying chemistry, efficiency advances enabled by this transition, as well a first insights gained from operating the commercial scale unit.