(683a) Determination of Orientation and Conformation of Lysozyme at the Air-Water Interface Using an Integrated MD/SFG Approach
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Separations Division
Molecular Simulation of Adsorption
Friday, November 20, 2020 - 8:00am to 8:15am
In this talk we describe our approach to uncovering this interfacial structure by combining molecular dynamics simulation, vibrational sum frequency generation (SFG) spectroscopy, and spectral calculations to determine the conformation and orientation of lysozyme at the AWI. Computationally, two force fields are used to simulate lysozyme. With this approach we determine agreement in a single interfacial pose at high atomistic resolution. We validate the proposed structure of lysozyme by comparing signals of experimentally derived structures, to the spectra calculated from simulation, showing strong agreement by the pose predicted by MD. Lastly, we provide additional atomistic insight, discussing how pH may lead to an orientation change from head on to side-on at the interface, explaining previous discrepancies in the literature with regards to the thickness of the experimentally derived monolayers. This work provides a template for future studies of proteins at interfaces to make maximum use of integrated computational and experimental approaches.
[1] Dickinson, E. Proteins at Interfaces and in Emulsions Stability, Rheology and Interactions. J. Chem. Soc. Faraday Trans. 1998, 94 (12), 1657â1669.
[2] McClements, D. J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9 (5), 305â313.