(3fk) Comparison of the Adsorption Capacity of Acetaminophen on Sugarcane Bagasse and Corn Cob By Dynamic Simulation | AIChE

(3fk) Comparison of the Adsorption Capacity of Acetaminophen on Sugarcane Bagasse and Corn Cob By Dynamic Simulation

Authors 

Juela, D. M. - Presenter, Universidad de Cuenca
Research Interests

Teaching Interests

Abstract

Acetaminophen (ACT), an antipyretic analgesic, is one of the emerging pollutants that has been found in high concentrations in domestic and hospital wastewaters. This study compared the adsorption capacity of sugarcane bagasse (SB) and corn cob (CC) for the ACT removal through the dynamic simulation of the adsorption column using Aspen Adsorption® V10. The effects of flow rate (1.5-3.0 mL min-1), ACT initial concentration (40-80 mg L-1), and bed height (20-35 cm) on the breakthrough curves were studied. Finally, the simulation results were validated with experimental studies, and analyzed by error functions, sum of squared errors (SSE), absolute average deviation (AAD), and coefficient of determination (R2). Based on the predicted breakthrough curves, ACT is adsorbed in greater quantity on CC, with saturation times and adsorption capacity greater than SB in all simulations. The maximum adsorption capacity was 0.47 and 0.32 mg g-1 for CC and SB, respectively, under condition of flow rate of 1.5 mL min-1, bed height of 25 cm, and ACT initial concentration of 80 mg L-1. Breakthrough and saturation times were higher when the column operated at low flow rates, large bed height, and low ACT concentrations, for both adsorbents. The predicted and experimental breakthrough curves satisfactorily coincided with R2 values greater than 0.97, SSE and AAD values less than 5% and 0.2, respectively, for all studies. The experimental adsorption capacity was greater for CC than for SB, thus confirming that the software is able to predict which adsorbent may be more effective for ACT removal. The results of this study would speed up the search for effective materials to remove ACT from wastewaters.

Checkout

This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.

Checkout

Do you already own this?

Pricing

Individuals

AIChE Pro Members $150.00
AIChE Emeritus Members $105.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00