(256b) 3D-PTV Measurements in an Agitated Vessel with Newtonian and Non-Newtonian Fluids
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
North American Mixing Forum
Mixing in Rheologically Complex Fluids and Polymeric Systems
Tuesday, November 17, 2020 - 8:15am to 8:30am
In this work, 3D-PTV with a single camera setup has been used to measure the velocity fields of Newtonian and non-Newtonian fluids in a 4.5 L cylindrical vessel (T = 180 mm, H/T = 1), equipped with a 60 mm Rushton turbine (D/T = 1/3, c/T = 1/3) and operated in the transitional flow regime.
Synchronous image sequences of the flow at 1,024×1,024 pixel resolution were recorded from two viewing orientations, using a high-speed camera and a mirror arrangement. The data processing involved the following steps:
- The tracers in the two image planes were detected through an image analysis algorithm and their centroids were determined with subpixel precision.
- The stereo-calibration of the two viewing orientations allowed, at each time step, the correspondences between the tracers in the two image planes to be established and the determination of their coordinates in the 3D space. The uncertainty in the 3D positions of the tracers depends greatly on the quality of the calibration process. Typical values were in the order of 100 µm.
- The trajectories were extended step by step by finding the correct link between the current position and that at the next time step. For each particle at a certain time step, a search volume in the following step was centred at the predicted new position. The correct link among a list of candidates was found by minimizing the Lagrangian acceleration.
- The velocity data along the trajectories were obtained by discrete differentiation of the coordinate vectors with time. A Savitzky-Golay low-pass filter was applied to the coordinates before the differentiation to limit the error amplification. The filter was applied again to the velocity data to further enhance the signal-to-noise ratio.
- Finally, the 3D time-resolved Lagrangian data were grouped in a 2D cylindrical grid along the radial and vertical directions. The ensemble average velocity was calculated in each cell, obtaining a 2D averaged Eulerian velocity field.
The figures below show the case of a Herschel-Bulkley fluid (Carbopol 940 solution in water, 0.2% wt) agitated at 400rpm. Extending Metzner-Ottoâs concept(5) to the low transitional regime, the Reynolds number was about 20. As a result of the yield stress, the fluid formed a cavern around the impeller (Figure 1). The cavern was successfully captured by PTV measurements (Figure 2).
Figure 1: Extension of the cavern formed by a Herschel-Bulkley fluid agitated at 400 rpm, visualized by injection of a dye.
Figure 2: Detail of the Lagrangian trajectories in the impeller discharge region obtained with PTV (left) and 2D average Eulerian velocity field obtained by post-processing (right).
References:
- Bashiri, H., Bertrand, F., Chaouki, J. (2016), Chem Eng J, 297: 277â294.
- Galletti, C., Brunazzi, E., Yianneskis, M., Paglianti, A. (2003), Chem Eng Sci, 58: 3859â3875.
- Wernersson, E.S., Tragardh, C. (1998), Chem Eng J, 70: 37â45.
- Alberini, F., Liu, L., Stitt, E.H., Simmons, M.J.H. (2017), Chem Eng Sci, 171: 189 â 203.
- Metzner, A.B., Otto, R.E. (1957), AIChE J, 3: 3 â 10.