Go For the Gold Medal in your Chemical Engineering Career

Todd J. Willman, PE, MBA Director of Engineering - EPI Engineering Director of Development - EPCON International

Chemical Engineering Disciplines

How to Obtain the Gold Medal

EPCONSOFTWARE ...

- Choose your Event
 - What is your passion in Chemical Engineering?
 - Work on this passion even if it's on your own time
 - Choose mentors who have experience in your passion
- Practice Hard
 - Focus on the fundamentals
 - Choose your mentors
- Have a Vision!
 - Develop short and long term visions
 - Don't listen to the wrong voices (ear plugs sometimes required)
- Go for the Gold!
 - Usually at least 4 years of hard work
 - Sometimes it will take several Olympics to realize Gold
 - Stay with it you are in the race until you step off the track

Practical Application of Fluid Flow

EPCONSOFTWARE ...

- Process Systems Increased Throughput
- Energy Systems Reduced Fuel, Electrical, Chemical and Water Costs + Increased Throughput
 - Steam Networks, Letdown Valves/Turbines
 - Condensate and BFW Systems
- Water Systems Reduced Electrical, Chemical and Water Costs + Increased Throughput
 - Cooling Water Distribution Systems
 - Process Water Distribution Systems
- Safety Systems Personnel and Asset Protection
 - Fire Water Distribution Systems
 - Flare Header Gathering Systems
 - Pressure Relief Valves

Background of EPCON & EPI

EPCONSOFTWARE ...

In 1984, EPCON Software developed the first ever suite of engineering software applications and have overtime molded its software into industry leading solutions.

- Over the past 28 years, EPCON Software has accumulated multiple patents that protect its award-winning technology
- EPCON's flagship product Engineer's Aide SiNET is the most widely used pipe flow analysis software in the world
- EPCON Software is also technology partners with the American Petroleum Institute and the Gas Processors Association
- Over the past decade many EPCON Software clients such as Dow Chemical, 3M, Eastman Chemical, Shell Chemicals LP, ConocoPhillips, Chevron, BP, Citgo, Texas Petrochemicals and Lyondell have requested that our team of experts model, simulate, analyze, and optimize their respective utility systems using our software technology.
- Due to high demand of our service, EPCON Software created EPI Engineering in 2002 and expanded into specialized services specifically for utility systems

EPI Engineering Study Types

EPCONSOFTWARE ...

Energy

Steam Systems Condensate Fuel Systems

Water

Cooling Water Boiler Feedwater Clarified Water

Safety

Flare Headers Firewater Safety Showers

Mental Model vs. Simulation Model

Steam/Condensate System Analysis

EPCONSOFTWARE ...

Cooling Water System Analysis

The Extended Bernoulli Equation

1,2

EPCONSOFTWARE ...

$$P_1 + \frac{\frac{\rho v_1^2}{2g_c}}{144} + \frac{\rho Z_1}{144} = P_2 + \frac{\frac{\rho v_2^2}{2g_c}}{144} + \frac{\rho Z_2}{144} - \sum F + W$$

For determining pressure drop from pipe inlet (1) to pipe outlet (2)

P=Pressure (lbf/in²)

v= Kinetic Energy (ft/sec)

Z=Potential Energy (ft)

W= Work done on or by the fluid (lbf/in²)

 ρ = Fluid Density (lbf/ft³)

 g_c =Acceleration of Gravity (32 ft/sec²)

 $144 \text{ in}^2 = 1 \text{ ft}^2$

Energy Balance for Flow in Pipes

EPCONSOFTWARE ...

$$P_1 - P_2 = \left(\frac{\frac{\rho v_2^2}{2g_c}}{144} - \frac{\frac{\rho v_1^2}{2g_c}}{144}\right) + \left(\frac{\rho Z_2}{144} - \frac{\rho Z_1}{144}\right) - \sum_{1,2} F + W$$

PRESSURE =KINETIC+POTENTIAL + FRICTION + WORKENERGYENERGYENERGYENERGY

- + Kinetic Energy Change
- + Potential Energy Change
- + Frictional Energy Change
- + Work Energy Change
- = Pressure Energy Change (what we are solving for!)

Frictional Energy Loss

EPCONSOFTWARE ...

To calculate pressure drop from pipe friction and minor losses

C

F=Frictional Energy Loss in Pipes (lbf/in²)

 $F = \rho/144 \left(\frac{fL}{D} + \sum K\right) \frac{v^2}{2a}$

- f= Moody or Darcy Friction Factor (dimensionless)
- L= Pipe Length (ft)
- D= Pipe Diameter (ft)
- K= K Value for Flow Resistance (dimensionless)
- v= Average Velocity (ft/sec)
- g_c = Acceleration of Gravity (32 ft/sec²)

Turbulent vs. Laminar Flow

EPCONSOFTWARE ...

Moody Friction Factor

EPCONSOFTWARE ...

Engineering K- Values for Fittings and Hand Valves

EPCONSOFTWARE ...

Fitting, Hand Valve	K Value	Pipe Dia	F_t
Short Radius 90 Deg. Elbow (r/d=1)	20 F _t	0.5 inch	0.027
Long Radius 90 Deg. Elbow (r/d=1.5)	14 F _t	0.75 inch	0.025
Tee Thru	20 F _t	1 inch	0.023
Tee Branch	60 F _t	2 inch	0.019
Pipe Entrance	0.5	3 inch	0.018
Pipe Exit	1	4 inch	0.017
Gate Valve	8 F _t	6 inch	0.015
Ball Valve	3 F _t	8-10 inch	0.014
Butterfly Valve	45 F _t	12-16 inch	0.013
Globe Valve	340 F _t	18-24 inch	0.012
Swing Check Valve	50 F _t	26-48 inch	0.011

TPC Group Case Study

- TPC Group Houston Operations was evaluating the potential expansion of several existing production units as well as building new production units.
- The need was identified to assess the capacity of existing utility systems including steam, condensate, compressed air, nitrogen, natural gas, fuel gas, cooling water, and firewater systems.
- Detailed simulation models of each utility system were developed and tuned to match existing plant data in order to identify available capacity of each system and understand current limitations.

- The analysis also provided significant insight into energy savings opportunities throughout the current plant operations.
- All plant utility systems were modeled and evaluated which have not been looked at in detail since their original design
- The end result of the studies provided identified cost reduction opportunities of >\$5MM, of which some have already been implemented.
- This presentation will discuss specific examples of the analysis and show corresponding results in both the steam and water systems.

Steam System Savings

- 750# Steam Leaks (estimated) 10,000 lb/hr
- 150# Steam Leaks (quantified) 69,930 lb/hr
- 15# Steam Leaks (quantified) 44,668 lb/hr
- Total Steam Leaks \$124,598 lb/hr
- Estimated total cost of steam leaks \$6,300,000/yr
- Estimated savings with 80% reduction \$5,000,000/yr

Cooling Water System Energy Savings

EPCONSOFTWARE ...

Туре	Basis	\$ Amount	Туре
Cooling Water Pump HP	2500 HP	\$483,000	Annual
Fire Water Pump HP	200 HP	\$38,000	Annual
Total Savings		\$521,000	Annual

Cooling Water System Water Savings

Туре	Basis	\$ Amount	Туре
CIWA Raw Water	800 gal/min	\$227,000	Annual
Clarified/Filtered Water	600 gal/min	(\$62,000)	Annual
Total Savings		\$165,000	Annual

Steam System Modeling

- Detailed walk-down of system piping required to build simulation models.
- All flowmeters and users identified and quantified using data historian.
- Detailed steam balance accomplished for one point in time on the data historian under typical operations.
- Additional flows required to validate the model to match field data represent steam leaks.
- Detailed flow simulation models built and validated to plant data by EPI Engineering using EPCON's industry leading Flow Simulation Software, Engineer's Aide SiNET.

750 # Steam System

EPCONSOFTWARE ...

150 # Steam System

EPCONSOFTWARE ...

15# Steam System

EPCONSOFTWARE ...

- Detailed walk-down of system piping required to build simulation models
- Collected field data on pressures and flowrates using new pressure gauges and ultrasonic flowmeters
- Additional resistances added in model are used to match the real-world data and quantifies system fouling
- Pump curves de-rated in models to match field
 performance data
- Detailed flow simulation models built and validated to plant data by EPI Engineering using EPCON's industry leading Flow Simulation Software, Engineer's Aide SiNET.

CT-10-17-18 Cooling Water Systems

EPCONSOFTWARE ...

27

CT-3-7-14 Cooling Water Systems

EPCONSOFTWARE ...

- A new clarified-utility water system was proposed to achieve the water savings and provide improved water quality for cooling water make-up
- Piping was routed to follow an existing underground HDPE firewater pipe now being installed around the facility
- Existing, clarified-utility water pumps were utilized to minimize capital costs
- Will allow for lowering flowrates to exchangers with the majority receiving 50-100% above their design flow to alleviate fouling from CIWA water used as cooling water make-up and avoid the major capital expense of a new cooling tower

Clarified-Utility Water System

EPCONSOFTWARE ...

- Quantified steam/condensate leaks (\$5MM+) for justification of repair
- Identified cooling water pump energy savings and capital cost avoidance savings to quickly justify and pay for the study
- Identified water savings to justify converting cooling water make-up from CIWA to clarified water
- Reduced exchanger fouling and improved process performance from use of clarified water as cooling tower make-up.
- Reduction in planned capital costs (\$500,000 in earlier study and recently \$10MM in avoidance of a new cooling tower)

Total Facility Energy Study High Pressure Steam System

EPCONSOFTWARE ...

Total Facility Energy Study Low Pressure Steam System

EPCONSOFTWARE ...

Total Facility Energy Study Compressed Air System

EPCONSOFTWARE ...

EPCONSOFTWARE ...

Р			Energy I	Units	mmbtu/h	Turb	Turb	Turb	Turb	Turb			Total	Total					
Generat	ion		Steam N	letwork N	//atrix	LD	LD	LD	LD	LD	LD	С	Heat	Work	Total	Total	Consump	tion	
Boiler	Process	Import	Pres		750	150	65	50	15	5	vent	Consum	Use	Use	Use	Prod	delta		
1,341.9			750		1,341.9	1,114.3	0.0	0.0	0.0	0.0		57.9	1,241.0	101.0	1,342.0	1,341.9	-0.1		
					work	101.0	0.0	0.0	0.0	0.0		n	nmbtu/h	101.0					
			LD		LD	45.9	0.0	0.0	0.0	0.0	22.9		HP	39,698.3					
			150			0.0	5.8	0.0	183.9	68.5		532.2	1,142.3	12.5	1,154.8	1,160.1	5.3		
						work	0.0	0.0	7.8	4.7		n	nmbtu/h	12.5	14				
			LD			LD	70.7	94.5	137.2	0.0	49.6		HP	4,932.2					
			65				0.0	0.0	0.0	0.0		29.5	66.7	0.0	6 <mark>6.7</mark>	76.4	9.7		
							work	0.0	0.0	0.0		n	nmbtu/h	0.0				Contraction of the second	
			LD				LD	0.0	37.2	0.0		1	HP	0.0					
			50					0.0	0.0	0.0		89.0	108.7	0.0	108.7	94.5	-14.2		200
								work	0.0	0.0			mmbtu/h	0.0					
			LD					LD	19.8	0.0		0	HP	0.0					
			15						0.0	0.0		347.5	397.8	0.0	397.8	378.1	-19.7		
									work	0.0			mmbtu/h	0.0	N.				
			LD						LD	0	50.2	0	HP	0.0	V.				-
			5									69.5	69.5		69.5	6 <mark>8.5</mark>	-1.0		
			LD							LD					No.	11	-		200
			Total	mmbtu/h	1,341.9	1,160.1	76.4	94.5	378.1	68.5	122.7	1,125.6	2,956.5	113.6	3,070.0	3,119.6	-20.0		
			н	btu/lb	1,347.5	1,239.5	1,238.3	1,226.1	1,200.3	1,159.3	-	Total Wor	mmbtu/h	113.6					
				psia	764.7	164.7	79.7	64.7	29.7	19.7			HP	44,630.5					
				temp F	711.0	438.9	414.6	386.2	322.2	233.9		Consump	Heat	Work	Vent	Total Cons	Generatio	n	
												Gross	1,125.6	113.6	122.7	1,361.9	1,341.9	-20.0	
																1	1		
																			10

EPCONSOFTWARE ...

			Total Stm		Tot mmbtuh		Temp						Pres
			996 mpph	-	1,346 mm		711.0 F						750 psig
N0 11		No 11 Stm	T										
92.5%		332 mpph		LD									
84.4%		449 mm		34 mpph									
31 mm				46 mm		Stm Turb In							
41 mm						902 mpph						Consum	Vent
149 mm						1,215 mm						Consumers	Vent/Loss
238 mm							Gen In				100	43 mpph	17 mpph
						work	30 mw					58 mm	23 mm
Q						CT I	Com	eff		N A			
mmbtuh	Boiler 11					31	Gen	95%					
65.92		197.76						Gen Out		Motors	Export		
5 mpph						Turb Out		28 mw	Wor	k 23 mw	5 mw		
No 11	1	Total		\geq		902 mpph							
10.29		30.7		644 F	Heat	1,114 mm	423 F		Flow	Q	Temp	SuperHt	Pres
1,083.2		1,083.2	150,		work	101 mm			936 mpph	1,160 mm	439 F	65 F	150 psig
418.0		1,248.6						AU					
				LD 65	LD 50	LD 15		Turb 65	Turb 15	Turb 5			
				57 mpph	77 mpph	115 mpph	/	4.7 mpph	155 mpph	59 mpph			
				71 mm	94 mm	137 mm	6	5.80 mm	191.7 mm	73 mm			
								1		A.A			
				<u> </u>	\checkmark \checkmark	7							
				\geq .	X Z	Δ						Consum	Vent
				416 F	386 F	402 F	Out 65	327 F	Out 15	Out 5	399 F	Consumers	Vent/Loss
							4.7 mpph		155 mpph	59 mpph		425 mpph	40 mpph
						heat	5.76 mm	heat	183.9 mm	68.5 mm	0	532 mm	50 mm 🎽
						work	0.05 mm	work	7.8 mm	4.7 mm	V	A.	
								100	Flow	Q	Temp	SuperHt	Pres
			65	•				+	62 mpph	76 mn	415 F	104 F	65 psig

Total Facility Water Study Boiler Feed Water System

EPCONSOFTWARE ...

Total Facility Water Study Condensate System

EPCONSOFTWARE ...

Total Facility Safety Study Flare System

EPCONSOFTWARE ...

Total Facility Safety Study Fire Water System

EPCONSOFTWARE ...

Total Facility Safety Study Safety Shower System

EPCONSOFTWARE ...

